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Quantum Interference in Artificial Band Structures
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Magnetotransport experiments on two-dimensional electron systems with an atomically precise, one-
dimensional potential modulation reveal striking quantum interference oscillations. Within a semiclassical
framework, they are recognized either as self-interference along closed orbits, many of them rendered
possible by magnetic breakdown between Fermi contour segments of the artificial band structure, or as
interference-enhanced backscattering. The known commensurability oscillations appear as a special case
of the latter mechanism.
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Abundant new physics was brought about by the inven-
tion of the superlattice (SL) concept [1] and its subsequent
realization through molecular beam epitaxy (MBE) of lay-
ered semiconductor structures with atomic precision. The
formation of minibands isolated by minigaps in the verti-
cal SL direction ensues from the coupling between adja-
cent quantum wells. In order to reduce the dimensionality
of the system, electrons are confined in one direction to
a quantum well, and a lateral periodic potential modu-
lation may additionally be imposed from the surface of
the sample with, for example, lithographically defined top
gates. As in the conventional vertical SL geometry, an arti-
ficial band structure derives from the reduced width of the
Brillouin zone and zone folding. Magnetotransport offers
an excellent tool for the study of the resulting band struc-
ture in these laterally modulated two-dimensional systems
(2DES), since oscillations in the magnetoresistance pro-
vide immediate information on the area encircled by closed
electron orbits at the Fermi energy EF [2]. As the magnetic
field is raised and if EF is located within a higher mini-
band, not only the zero field closed Fermi contours, but
also closed trajectories composed of Fermi contour sec-
tions belonging to other occupied minibands are traced
out by virtue of a tunneling process referred to as mag-
netic breakdown [3]. All these closed orbits, that encircle
different areas, leave signatures in the magnetoresistance
and should be instrumental in uncovering the detailed band
structure. Contrary to metallic systems, EF can be tuned
over a wide range in these semiconductor based SLs, so
that it should in principle be possible to map out the entire
energy dispersion.

Surprisingly, to date, such experimental evidence for an
artificial band structure is sparse. Only very recently, using
two-dimensional modulation, unambiguous proof of two
different closed electron orbits was achieved [4]. Similar
data for the textbook one-dimensional case has not been
reported. This lack of evidence may be related to the in-
herent inadequacy of lateral modulation schemes in pro-
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ducing concurrently a high quality 2DES and a sufficiently
short period and large amplitude modulation to guarantee
the occupation of only few, well-isolated minibands. Re-
sults obtained on semiconductor vicinal surfaces were first
thought to exhibit artificial band structure effects, but were
later explained in the valley projection model and not as a
true superlattice phenomenon [5].

In this Letter, we use a new concept to fabricate lateral
SLs based on the cleaved edge overgrowth technique [6],
that overcomes the limitations of previous geometries
by periodically modulating the material composition
directly adjacent to the 2DES. In this way, both the
period and the modulation strength can be tailored with
unprecedented precision by MBE growth. Our magneto-
transport data reveal oscillations, that we unambiguously
relate to the artificial band structure with a semiclas-
sical theory. These features originate either from self-
interference along closed electron orbits, in part made
possible through the mechanism of magnetic breakdown,
or from quantum interference between open electron
paths. Surprisingly, the well-known commensurability os-
cillations (COs) [7] emerge in our theoretical description
as a special class of the latter interference effect. This
direct theoretical relationship between Fermi surfaces and
these COs had been elusive to this date [8].

The sample structure is shown in Fig. 1. In a first MBE
step, an undoped SL with lattice constant d � 100 nm of
30 periods of 50 nm GaAs and 50 nm Al0.32Ga0.68As is
grown between two n1-GaAs contacts, that act as source
and drain. In a second MBE step, the sample is cleaved
in situ and immediately thereafter overgrown by a 30 nm
undoped GaAs layer, a 100 nm AlAs barrier, and an n1-
GaAs gate contact. Similar samples with 15 nm period
are discussed in Ref. [9]. By applying a positive gate volt-
age with respect to source and drain a 2DES is induced at
the GaAs�AlAs heterointerface. The finite overlap of the
electron wave function with the SL causes a modulation
of the electron density ns in x direction with a strength
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FIG. 1 (color). Sample cross section. The 2DES is field in-
duced at the GaAs�AlAs heterointerface in the (110) direction
by means of a positive voltage applied to the n1 GaAs gate.
The (001)-oriented SL provides an atomically precise potential
modulation to the 2DES.

that depends on the GaAs layer thickness. For our sample
this variation of the density, integrated over the z direc-
tion, exceeds 10%, as determined by a self-consistent 2D-
Poisson/Schrödinger calculation. Magnetotransport data,
with the magnetic field oriented perpendicular to the 2DES,
are obtained at 0.3 K with lock-in techniques.

A typical measurement of the magnetoresistance at a
fixed electron density of 3.1 3 1011�cm2 is depicted in
Fig. 2. The trace is plotted against inverse magnetic field,
1�B, and the resistance values are multiplied by 1�B2 to
ensure that the small amplitude oscillations at the weakest
magnetic fields are made visible. The observed oscil-
lations are all 1�B-periodic and four different oscillation
frequencies D21 can be distinguished in this presentation
of the data. Three different frequencies clearly domi-
nate the regimes 1�B . 9.6 T21, 9.6 T21 . 1�B .

6.0 T21, and 1�B , 6.0 T21, while in the latter regime an
additional beating pattern with a smaller frequency is ap-
parent in the envelope (dashed line). The same experiment
is repeated by recording the magnetoresistance from
B � 0 to 1.4 T and systematically varying the electron
density between ns � 0.45 3 1011 cm22 and ns � 4.6 3

FIG. 2. Typical magnetoresistance curve as a function of the
inverse magnetic field. Three different oscillation frequencies
are observed in the regimes separated by the dashed lines. More-
over, the envelope exhibits a beating pattern with maxima at the
positions of the triangles. For example, at an inverse field of
6.0 T21 the amplitude of the oscillations and the total resistance
are 19 and 260 V, respectively.
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1011 cm22. Each curve is then Fourier transformed with
respect to the inverse field to obtain the frequency com-
ponents D21 of the magnetoresistance oscillations. The
results are summarized in Fig. 3. The amplitudes of the
frequency components are plotted on a logarithmic color
scale, where large and small amplitudes appear as red and
blue, respectively.

To analyze the transport data, the contours of constant
energy EF of the modulated 2DES are plotted with the
information acquired from a self-consistent band structure
calculation, while keeping in mind the free electron motion
along the y direction. Hereafter, minibands are assigned
an index n that runs from 0 for the energetically lowest
lying miniband to N for the last, partially filled miniband.
The minibands with index n and n 1 1 are separated by
the minigap denoted as En at kx � 6p�d or kx � 0. For
the density range covered in this experiment three to six
minibands are occupied, and the case of four minibands
(n � 0, . . . , 3; N � 3) is shown in Fig. 4(a). The Fermi
contours are color coded and indexed according to the
miniband they are associated with. In general, Fermi con-
tour N is closed [red contour in Fig. 4(a)], whereas all
other contours (0, . . . , N 2 1) describe open electron tra-
jectories. The electrons trace these contours in a direction
fixed by the sign of the magnetic field. A transition from
contour n to its neighbor n 1 1 entails quantum mechani-
cal tunneling across the gap of size En, a process referred
to as magnetic breakdown [3]. The tunneling probability
pn�B� depends on EF and En. It vanishes at B � 0 and
increases exponentially with B. At the lowest B values,
the only possible closed electron orbit is along contour
N . As B is raised, though, other closed orbits, composed
of segments of contour N as well as segments of open
contours with lower index, become possible by virtue of
magnetic breakdown. In particular the orbit (hereafter

FIG. 3 (color). Color scale plot of the Fourier transformed
magnetoresistance data. The density dependent peaks are di-
rectly related to different electron trajectories in the artificial
band structure.



VOLUME 86, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 26 FEBRUARY 2001
FIG. 4 (color). (a) Fermi contours calculated for EF �
7.5 meV, which is in the fourth miniband. For the sake of clar-
ity, we have chosen larger gaps in this example than obtained
from the self-consistent Poisson/Schrödinger calculation for this
experiment. Schematic drawing of closed (b) and interfering
open (c) orbits responsible for the observed magnetoresistance
oscillations.

classified according to the lowest contour index n in-
volved), that descends from the closed Fermi contour asso-
ciated with miniband n before the Fermi energy was raised
from miniband n into miniband N , is reactivated. This
closed electron path n shares segments of contours n to
N and requires a total of 4 3 �N 2 n� tunnelling events
across gaps of size En to EN21. The product of the cor-
responding pi�B� factors determines its probability [10].
This orbit encloses an area An

F that can be calculated to a
very good approximation in the limit V0 ! 0:
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where kF is the Fermi wave number and k0 � p�d. In
Fig. 4(a), the closed orbit n � 1 contains sections of con-
tours n � 1, 2, and 3, involves tunneling across E1 and
E2 and encircles the blue shaded area A1

F (orbits n � 2
in green and 3 in red cover part of this area). According
to Onsager [2], electrons that orbit around an arbitrarily
shaped Fermi surface AF give rise to 1�B-periodic oscilla-
tions in the magnetoresistance with a frequency D21,

D21 �
h̄

2pe
AF . (2)

Our density dependent study in Fig. 3 of the frequency
components contained in the magnetoresistance together
with Eqs. (1) and (2) now enables us to identify the max-
ima marked A0

F, A1
F, and A2

F as caused by electrons per-
forming closed orbits n � 0, 1, and 2. The switch from
lower to higher frequency near B � 104 mT and B �
167 mT in Fig. 2 can be understood as a transition from
electrons orbiting predominantly around the area A2
F to or-

bits around A1
F and A0

F, respectively. In the intermediate
B-field regime multiple closed paths may simultaneously
have a significant probability. Eventually all tunneling
probabilities approach unity for sufficiently large fields and
the orbit with area A0

F, equivalent to the cyclotron orbit of
the unmodulated 2DES that brings about the commonly
known Shubnikov –de Haas oscillations, is restored and
prevails. The orbits with area An

F are the most obvious
closed trajectories, however more complicated closed paths
with these simple surfaces as constituents are illustrated in
Fig. 4(b) and are in fact resolved in Fig. 3 (for example,
A0

F 1 A1
F and 2A0

F 2 A1
F).

Hitherto, the discussed oscillations were a direct
consequence of the constructive self-interference of the
wave function along closed orbits and the subsequent
quantization in a magnetic field [2]. This mechanism
leaves unexplained our observation of the frequency
components determined by the surfaces A1

D � A0
F 2 A1

F

and A2
D � A0

F 2 A2
F in Fig. 3, since an electron circling

along the closed boundary of this surface would violate
the chirality imposed by the B field along part of the
perimeter. We assert that oscillations with such frequen-
cies originate from the 1�B-periodic modulation of the
backscattering probability due to quantum-mechanical
interference between two open trajectories with common
start and end points as illustrated in Fig. 4(c) for surface
A1

D. Electrons traveling in negative kx direction from
point P1 follow either path a or b, depending on whether
they do or do not tunnel at this starting point, and rejoin
at point P2. Constructive interference of the coherent
superposition of both paths maximizes the backscatter-
ing probability and, consequently, the conductivity syy

approaches a minimum. It is straightforward to show
from the tensor inversion, that this implies a minimum
in the longitudinal resistivity rxx as well. In the case
of destructive interference, the electron will effectively
proceed along the open Fermi contour and thus syy

and rxx reach their maximum value. This qualitatively
different interference phenomenon reminds one of an
Aharonov-Bohm interferometer with the important dispar-
ity that in the case at hand the area in real space enclosed
by the interfering paths scales with B22, since real space
orbits have the same shape apart from a p�2 rotation
as their counterparts in reciprocal space but are scaled
with the square of the magnetic length, l2

B � h̄��eB�.
As a result, one anticipates a 1�B-periodic rather than a
B-periodic phase difference between the interfering tra-
jectories. The phase accumulated along path i � a or b

is given by

Fi �
1
h̄

Z
i
�h̄ �k 2 e �A� d �r 1

p

2
Ci , (3)

where 2e is the electron charge, �A the vector potential, and
Ci a constant. As a result, the B-dependent contribution to
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the phase difference FD � Fb 2 Fa is equal to l2
BA

b2a
D ,

where A
b2a
D is the area in reciprocal space bounded by a

pair of paths a and b. The area A
b2a
D is nothing but the

difference between surfaces Ai
F and A

j
F, that have common

borders except for paths a and b. The alternation fre-
quency of the backscattering probability is then obtained
from the condition l2

BA
b2a
D � 2pm (m � 1, 2, . . .), i.e.,

from Eq. (2) when substituting A
b2a
D for AF. Now, it is

clear that this quantum interference effect explains the re-
maining peaks in Fig. 3 marked A1

D and A2
D.

From Eq. (1), it follows that 4kFp�d is a very good
approximation of A1

D for the density range covered in the
experiment of Fig. 3 and is exact in the high density limit.
Strikingly, the resulting periodicity is identical to the one
of the well-known Weiss oscillations [7], that can be un-
derstood in a semiclassical picture: whenever the lattice
period d is commensurate with the free electron cyclotron
radius Rc in accord with 2Rc � �m 2 1�4�d, rxx reaches
a minimum. In this expression, the term equal to 1�4 fixes
the absolute position on the magnetic field axis. Noting
that Eq. (2) with A

b2a
D instead of AF remains valid, the

problem of interfering open trajectories can be treated for-
mally as self-interference along an imaginary closed orbit.
The absolute position of the minima in our interference
picture is then obtained when keeping track of all con-
tributions to the phase difference FD � l2

BA1
D 1 gDp�2,

including the Maslov index [11] gD associated with the
“closed” path. To reach the same result as for Weiss oscil-
lations, gD should be equal to 1. For the sake of compari-
son, we point out that for self-interference along the free
cyclotron orbit F0 � l2

BA0
F 1 g0p�2, with Maslov index

g0 � 22. Since the topology of the imaginary closed or-
bit is different from the free cyclotron orbit, the difference
in their Maslov indices does not come as a surprise. To
provide further support for the relationship between COs
and the special case of quantum interference between open
orbits bounding area A1

D, it is instructive to derive the tem-
perature scale up to which this interference phenomenon
persists. To this end, the energy variation dE at fixed B
inducing a phase change of 2p is calculated,

dE �
2peB

h̄

µ
≠A
≠E

∂21

� 2p h̄vckF

µ
≠A
≠kF

∂21

, (4)

where h̄vc is the free electron cyclotron energy and A the
relevant k-space area. For the free electron cyclotron orbit
with area A0

F � pk2
F the familiar condition kBT , dE0 �

h̄vc is retrieved from this formula. In contrast, a much
weaker temperature dependence is predicted for the inter-
fering open orbits bordering A1

D, and the oscillations sur-
vive as long as kBT , h̄vckFd�2. This weak temperature
dependence is in fact also found in the conventional CO
picture [12].
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This work on semiconductor SLs bridges the gap with
quantum interference phenomena previously reported in
metals [13] and more recently in organic superconductors
[14]. The fabrication of a device with few occupied mini-
bands enabled the unambiguous demonstration of the ar-
tificial band structure through the observation of multiple
closed orbits and 1�B periodically enhanced backscatter-
ing related to quantum interference of open orbits. We
have engineered a close to ideal lateral superlattice, which
excels in many ways over standard designs due to the un-
paralleled combination of attractive features: virtually no
limitations on modulation period and strength, monolayer
precision of the superlattice, exceptional density tunability,
and high quality due to the absence of modulation doping.
The stage is set for finding further exciting physics at even
smaller modulation periods.
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