
Compressive Computation

in Analog VLSI Motion Sensors

Rainer A. Deutschmann1 and Oliver G. Wenisch2

1 Walter Schottky Institute, 85748 Garching, Germany
2 Technische Universit�at M�unchen, 85748 Garching, Germany

Rainer.Deutschmann@wsi.tu-muenchen.de

Abstract. We introduce several di�erent focal plane analog VLSI mo-
tion sensors developed in the past. We show how their pixel-parallel
architecture can be used to extract low-dimensional information from a
higher dimensional data set. As an example we present an algorithm and
corresponding experiments to compute the focus of expansion, focus of
contraction and the axis of rotation from natural visual input. A fully
integrated system for real-time computation of these quantities is pro-
posed as well. In computer simulations it is shown that the direction of
motion vector �eld is best suited to perform the algorithm even at high
noise levels.

1 Analog VLSI Motion Sensors

In the past the computer vision communityhas invested much e�ort into develop-
ing motion detection algorithms; for a critical review see [BFB94]. Implementing
these algorithms in real-time systems proved challenging for computational rea-
sons. Additionally it has been realized that a motion vector �eld is useful mainly
as starting point for further computation, such as segmentation frommotion and
determination of the focus of expansion.

We have developed and implemented several real-time motion sensors. Using
di�erent algorithms, our sensors share the following features: They are single-chip
sensors, i.e. the photoreceptors and the motion computation circuitry sit in the
focal plane. They are pixel-parallel implementations, i.e. motion computation is
performed in synchrony by all pixels. No clock is required for motion computation
and, in contrast to digital implementations, in our sensors transistors are used
as analog computing elements (analog Very Large Scale Integrated). Previously
we have proven that analog VLSI motion sensors can be used e�ciently for
measuring fast rotational velocity [BD97]. In this paper we experimentally show
that our 2-D motion sensors can be used for estimating the focus of expansion
(FOE), the focus of contraction (FOC), and the axis of rotation (AOR). We use
an algorithm that ideally suits the pixel-parallel architecture of the sensors and
e�ectively reduces the computational load fromN2 to 2N.We also propose a fully
integrated 2-D system for on-chip estimation of the FOE, FOC, and AOR, which
ultimately compresses the computational load from N2 to 2. Through computer
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Fig. 1. Mean motion output ux of one pixel of the Gradient2d sensor for di�erent
stimulus velocities.

simulations we have investigated the robustness of the proposed system to noise
and low-contrast input.

Our motion sensors fall into two di�erent categories:

1. Feature-based sensors generally look for features, such as edges, in the
visual �eld and track them over time. Based on edge tracking for example
the sensors reported in [DHK97] compute the direction of motion (DOM)
vector �eld.

2. Gradient-based sensors instead use local temporal and spatial deriva-
tives of the light intensity to compute motion. An implementation of the
so-called gradient model, which yields velocity independent of spatial fre-
quency and contrast, has been reported [DK98a]. The \Gradient2d" sensor
implements an even simpler model for computing the motion vector �eld
(ux; uy) [DK98b]:
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where I(x; y; t) is the light intensity distribution on the focal plane, @I=@x
and @I=@y are both spatial derivatives, @I=@t is the temporal derivative, uo
and � are constants. The spatial derivatives are discretely approximated in
the implementation. The sensor output ux of one pixel for di�erent stimulus
velocities and orientations is shown in Figure 1. The motion output for higher
velocities saturates due to low pass �ltering in the photoreceptors and thus
becomes direction of motion like.



The compressive computation algorithms of this work are valid for motion vec-
tor �elds of both categories described above. We present experimental results
obtained with a Gradient2d 15�15 pixel array.

2 Determining Axis of Rotation and Focus of Expansion

The FOE of a velocity 
ow �eld can be obtained analytically by solving an
overdetermined system of O(N2) equations [HS93], where N�N is the array size.
We extend the idea proposed in [Bor94] to general 
ow �elds and reduce the
computational load to O(N) by using row and column averages. The X compo-
nent of the FOE is given by the position of the zero crossing (ZC) of the column
average of ux, the X component of the corresponding motion vectors. If there are
multiple ZCs, the one with the maximal slope is to be taken. The FOE Y com-
ponent and the AOR location are given accordingly:
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Our motion sensors now can be used not only to compute the motion vector �eld
u(x; y) in real time, but also the row and column averages: The pixel array is
addressed by one row and one column scanner, and the motion vector compo-
nents are represented as bidirectional currents. Thus by gating out one entire
row or column, the vector sum is obtained automatically. All N row sums and
N column sums are read into a computer, where the ZCs and thus the FOE or
AOR is determined. Since only 2N instead of N2 operations are required, the
FOE and AOR can be determined very fast. We achieve frame rates beyond
400Hz.

2.1 Axis of Rotation

We start with describing experimental results on estimating the AOR. We ro-
tate di�erent gray value images in the �eld of view of the sensor. With a digital
computer we continously read out the motion vector �eld and the row and col-
umn averages as computed by the sensor. The vector �eld is simply read out
and displayed for illustration. For AOR/FOE estimation only the averages are
necessary. In Figure 2 we show a snapshot of the sensor data as a 'wagon wheel'
stimulus was rotating in front of the sensor. In the lower right corner the stimulus
as seen by the on-chip photoreceptors is shown. The solid curve in the horizontal
graph represents the Y component of the column sum as computed by the sen-
sor, the dotted line is obtained when the vector �eld is summed external of the
sensor; correspondingly, the vertical graph represents the X component of the
row averages. It can be seen that the motion vector �eld clearly re
ects the mo-
tion of the stimulus. Most importantly, the zero crossing of the row and column
average, as shown in Equation 4, obviously marks the location of the AOR.
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Fig. 2. Upper left: Motion vector �eld as computed by the sensor. Lower left: Column
sum of the Y component, upper right: Row sum of the X component of the motion
vectors. Lower right: Visual input as seen by the sensor.
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Fig. 3. Determining AOR from a dense 
ow �eld.

In Figure 3 a stimulus was used which produced an even denser motion vector
�eld. Once again in the row and column averages computed by the sensor the
AOR clearly stands out.



2.2 Focus of Expansion
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Fig. 4. Determining FOC. Horizontal and vertical graphs represent column and row
averages of X and Y components of the motion vectors, respectively.

In order to simulate approaching or receding ego-motion we have rotated a spiral
in front of the sensor. In Figure 4 the situation for receding ego-motion is cap-
tured: The motion 
ow �eld clearly is directed towards the FOC, and the ZCs of
the row and column averages indicate its location correctly; see Equation 3. For
approaching ego-motion the sensor computes an expanding motion 
ow �eld,
and the corresponding row and column averages yield the FOE.

2.3 Accuracy

In order to determine how accurately the sensor could determine the AOR and
FOE/FOC, we have recorded the row and column averages from the sensor chip
several times while the stimulus was rotating at a �xed location. As described
above, the location of the AOR was determined from the zero crossing of the
appropriate component of the row and column averages as computed by the
sensor. We �nd an absolute error for the X and Y component of 0.21 and 0.29
pixels respectively, the relative error with respect to the array size being 1.4%
and 1.9%. These values are surprisingly low. We expect a reliable operation even
under less ideal conditions.

2.4 Occlusions

We have tested how the estimate of the AOR would be in
uenced by partial
occlusions of the visual �eld of the sensor. For that purpose we were using a



5 10 15

5

10

15
0 5 10 15

0

2

4

6

8

10

12

14

16

Fig. 5. Sensor output for occluded input. Lower right: Unoccluded input.

rotating sine wave stimulus and occluded about a quarter of it; cf. Figure 5. We
have measured the AOR for several di�erent occlusion scenarios, all of which only
left three quarters of the full image information to the sensor. The surprising
result is that the errors in estimating the AOR did not increase signi�cantly
as compared to the non-occluded situation: We �nd relative errors of 1.8% and
2.3% for the X and Y component, respectively. As can be seen, though, the
averages obtained from the occluded areas are less strong, and the slope at the
ZC becomes shallower. For that reason the estimate of the AOR becomes less
reliable for stronger occlusions.

2.5 2-D FOE On-a-Chip

As we have shown that the compressive computation approach with our analog
VLSI sensor is successful, we are now planning a single chip system that also
takes over the task of �nding the ZC from the row and column averages. The
row and column averages are computed from the motion vector �eld and are
then smoothed by a lateral resistive net. Similar to the 1-D design of Indiveri
et. al. [IKK95] subsequently the zero crossing with the steepest slope is deter-
mined and its location is reported as a single 2-D vector. Thus AOR, FOE or
FOC can directly be read o� the sensor chip in true real time.

We have carried out computer simulations in order to determine the proposed
systems' robustness against noise in the motion vector �eld, and to �nd out
which motion detection algorithm performs best. We �nd three main results.
First, there is a minimum in the mean absolute deviation of the computed AOR
from the true AOR depending on the smoothing length �; cf. Figure 6. This is
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Fig. 6. Simulation result: Sensor performance for varying degree of smoothing.

because of the tradeo� between the positive e�ect of noise rejection with short-
scale smoothing and the erroneous shift of the ZC at large smoothing lengths.
Second, it has turned out that the vector �eld of type direction of motion is
best suited for determining the FOE, FOC, and AOR when using our proposed
algorithm. The mean absolute error of about 0.3 pixels corresponds well with
the measurement results presented in Section 2. Third, Figure 7 reveals that the
direction of motion sensor is most insensitive against noise. The saturation of
the error curves is due to the �nite size of the pixel array.

3 Summary

After brie
y introducing di�erent types of analog VLSI motion sensors we have
described how their pixel-parallel architecture can favourably be used for com-
putational tasks where from a higher dimensional data set lower dimensional
information is to be extracted. As an example we described an algorithm for
�nding the FOE, FOC and AOR. Using a gradient based 2-D motion sensor we
experimentally demonstrated that these quantities can robustly be determined
from natural visual input. Finally we proposed a fully integrated 2-D system
for real-time estimation of FOE, FOC and AOR and investigated in computer
simulations its performance at the presence of noise. We �nd that direction of
motion sensors perform most robust. Future work will concentrate on the imple-
mentation of the integrated system.
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Fig. 7. Simulation result: Sensor performance for increasing noise level.
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