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Summary
In this work we introduce the superlattice field-effect transistor (SLFET), a new three-

terminal semiconductor device that combines a two-dimensional electron system with a su-

perlattice, and thus allows us to explore hitherto undisclosed low-dimensional regimes. The

SLFET is fabricated with atomic precision in two spatial dimensions by molecular beam

epitaxy (MBE) in the GaAs/AlGaAs lattice matched material system using the cleaved-edge

overgrowth technique. In a first MBE growth step along the (001) direction, an undoped

superlattice is sandwiched between the source and drain contacts. After in situ cleaving

the sample, a GaAs set-back layer and a gate barrier and contact is grown in (110) direc-

tion. We have perfect control over all relevant layer thicknesses and compositions, thus

by band-structure engineering we can design any system between an array of weakly cou-

pled quantum wires, to a two-dimensional electron system with wide minibands and narrow

minigaps. We investigate these systems in low temperature electronic transport experiments,

either by equilibrium magnetotransport, or non-equilibrium current-voltage measurements.

Theoretical models are developed using semi-classical and quantum mechanical methods.

The artificial band structures, obtained with the SLFETs, represent energy scales (e.g.

miniband width or subband spacing), that are of comparable magnitude to other experimen-

tally controllable energy scales, such as the Fermi energy, the magnetic and potential energy,

and temperature. This sets us in a position to explore band structure effects in a variety of

systems over a wide parameter space. We have sectioned this work according to the miniband

width of the SLFET under study.

Magnetotransport in the lowest miniband of width ∆ = 3:3 meV reveals a cross-over

from a two-dimensional behavior, characterized by closed electron orbits and magnetore-

sistance oscillations, to a one-dimensional behavior, manifested by open electron orbits and

quenching of magneto-quantum oscillations, as the Fermi energy is raised from within the

miniband into the band gap. For large magnetic fields, closed electron orbits are recovered

due to magnetic breakdown. For the first time we directly confirm the theoretically expected

breakdown field. We can explain all experimental data within a semiclassical model, and

gain additional insight with a new quantum mechanical description by directly calculating
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2 Summary

the density of states in a non-perturbative way.

For a series of SLFETs with miniband widths between ∆ = 3:3 meV and ∆ = 21:2 meV,

in high field miniband transport experiments we discover negative differential resistance

in qualitative agreement with the Esaki-Tsu model. Additional current maxima are explained

by resonant emission of folded acoustic phonons through Bloch-oscillating electrons. The

two-dimensionality of the electron system together with the presence of a metallic gate serve

to stabilize the charge density in the negative differential velocity regime.

In weakly coupled quantum wires we observe transport in the resonant tunneling

regime involving the wire ground and first excited states. Magnetic fields applied perpen-

dicular to the wires, either parallel or perpendicular to the current direction, change the

position of the resonance peaks as well as the tunneling current. Our model is based on the

simultaneous conservation of electron energy and momentum in the tunneling process, the

magnetically induced spatial separation of forward and reverse moving electrons within each

wire and the distortion of the tunneling path in a magnetic field, and the formation of wire

Landau levels at high magnetic fields.

In weakly modulated two-dimensional electron systems, for the first time we directly

visualize the text-book case of a one-dimensional band structure. Our observation is ex-

plained semiclassically as quantum interference in artificial band structures. The first

type of quantum interference effect occurs in closed electron orbits, in part made possible by

magnetic breakdown of the small energy gaps separating formerly unconnected electron tra-

jectories. The second type of quantum interference effect relates two different open electron

orbits and results in a magnetic field dependent back-scattering probability. This process

corresponds to the Aharonov-Bohm effect in reciprocal space. The known Weiss (commen-

surability) oscillations appear as a special case of our theory, and are thus, for the first time,

explained by the topology of the artificial band structure.

Owing to the unparalleled combination of high electron mobility and density tunabil-

ity in very weakly modulated SLFETs, we are able to discover hitherto undisclosed aspects

of a ferromagnetic phase transition at fractional filling. As there exist two degenerate

ν = 2=3 fractional quantum Hall states with different spin orientations at low electron den-

sities, hysteresis in magnetoresistance, a non-monotonic time dependence reminiscent of the

Barkhausen effect, and peculiar features in resistively detected nuclear magnetic resonance

experiments are ascribed to a ferromagnetic ordering and domain morphology. Even though

our results generally apply to two-dimensional electron systems, we have evidence that the

potential modulation in the SLFET intensifies domain formation.

R. A. Deutschmann Two dimensional electron systems in atomically precise periodic potentials (2001)
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Chapter 1

Introduction

Two of the great achievements in solid state physics are the fabrication of low

dimensional systems, and the fabrication of artificial crystals with periodicity

larger than that of natural crystals. Examples of low dimensional systems are

two-dimensional electron gases, which led to the discovery of the integer and

fractional quantum Hall effects, and one-dimensional electron quantum wires.

By ’artificial crystals’ we mean superlattices, i.e. man made periodic potentials

superimposed on the natural periodic crystal potential.

These man-made structures become theoretically tractable with a quasi-

particle description. In a periodic potential, the relevant quasi-particles are

electrons that are assigned an effective mass, and in the case of the fractional

quantum Hall effect we deal with composite fermions. The beauty of artificial

crystals is that they allow the design of man made band structures, and give thus

control over the properties of these quasi-particles.

In this work we combine both these great achievements of solid state physics

into one semiconductor device, the superlattice field effect transistor. We explore

the landscape that opens up between the one- and the two-dimensional world,

that is furthermore enhanced by the effect of a magnetic field. This introductory

chapter is supposed to give a first impression of this world. All necessary tools

for understanding it will be provided in the subsequent chapters.
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4 CHAPTER 1. INTRODUCTION

Figure 1.1: Modulation doped heterostructure.

1.1 Physics in two dimensions

Historically, first experiments on two-dimensional electron systems were performed in an n-

channel inversion layer on the Si(100) surface [And82]. In 1966 Fowler, Fang, Howard,

and Stiles first observed Shubnikov-de Haas oscillations [Fow66a][Fow66b]. The most

prominent vehicle nowadays for studying two-dimensional electrons is the modulation

doped heterostructure, for highest quality best fabricated in the lattice matched gallium-

arsenide/aluminum-gallium-arsenide (GaAs/AlGaAs) material system. As shown in Fig-

ure 1.1, using the technique of molecular beam epitaxy (MBE) on a semi-insulating GaAs

substrate, the layer sequence GaAs - AlGaAs - δ silicon doping - AlGaAs - GaAs is grown.

Because silicon on (001) GaAs acts as a donor, and AlGaAs has a larger band gap than

GaAs, in thermodynamical equilibrium electrons are transferred from the δ doping site to

the AlGaAs/GaAs interface. There they form a two-dimensional electron system (2DES) of

density ns, electrostatically bound to the interface. The electron energy spectrum is

Ei(kx;ky) = E0
i + h̄2 k2

x + k2
y

2m�
; (1.1)

R. A. Deutschmann Two dimensional electron systems in atomically precise periodic potentials (2001)
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1.1. PHYSICS IN TWO DIMENSIONS 5

where E0
i is the subband energy of the quantizing triangular shaped potential in z direction,

~k = (kx;ky) is the electron momentum, and m� = 0:067m0 is the electron effective mass in

GaAs. This parabolic energy spectrum causes a constant density of states per subband

D0 =
m�

πh̄2 : (1.2)

In a magnetic field perpendicular to the electron system, the electronic states condense

into spin-split Landau levels

En;s = h̄ωc(n�1=2)+ sg�µBB; n = 1;2; � � � ; s =�1
2
; (1.3)

where ωc = eB=m� is the electron cyclotron frequency, µB = eh̄=(2m0) is the Bohr magneton,

and g� is the effective g factor, accounting for the Zeeman effect and the electron-electron

exchange interaction. g� is magnetic field dependent and can significantly differ from the

Landé factor g0 in GaAs. The constant zero-field density of states changes into a series of

delta functions

D(E) = nL ∑
n;s

δ(E�En;s); (1.4)

where the amount of states per spin-split Landau level nL = eB=h is magnetic field dependent.

The filling factor ν = ns=nL counts the amount of occupied levels.

Magnetotransport experiments are conducted by measuring the longitudinal or transverse

magnetic field dependent resistance of the electron system, thus probing the electron states

at the Fermi energy. For small magnetic fields ωcτ < 1 the classical Hall effect for the

transverse resistance, and a magnetic field independent longitudinal resistance is found. A

unique feature of these two-dimensional electron systems is their high perfection, manifest

in a large electron transport scattering time τ, or electron mobility µ = eτ=m�. In the molec-

ular beam epitaxy machine used for fabricating the SLFET in this work, on (001) GaAs we

routinely obtained low-temperature mobilities of µ = 10�106 cm2/Vs, equivalent to a scat-

tering time of τ = 0:4 ns, or a mean free path of λ = vFτ = 25 µm at an electron density of

ns = 2�1011 cm�2, where vF = h̄kF=m� is the Fermi velocity, and kF =
p

2πns is the Fermi

wave vector.

At low temperatures and high mobilities the condition ωcτ� 1 is readily achieved. Elec-

trons complete their cyclotron orbits, and the semiclassical quantization condition (Bohr-

Sommerfeld condition) for stationary states requires that an integer number of magnetic flux

quanta Φ0 = h=e threads the enclosed real space area πr2
c , where rc = vF=ωc is the cyclotron

R. A. Deutschmann Two dimensional electron systems in atomically precise periodic potentials (2001)
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6 CHAPTER 1. INTRODUCTION

radius. As the magnetic field is raised, this condition is met periodically in 1=B, and the

longitudinal resistance oscillates with a frequency

∆�1 � (∆(1=B))�1 = Φ0ns (1.5)

when the spin is resolved (Shubnikov-de Haas oscillations). This semiclassical picture will

be discussed and extended to more complex electron trajectories than circles in Chapter 5.

In the self-consistent Born approximation, short range scatterers result in a broadening of

the delta-function like density of states (1.4), and the scattering time depends on the density

of states D(EF) at the Fermi edge, τ ∝ 1=D2(EF). When the Fermi energy lies between two

Landau levels, the density of states vanishes, and the scattering time is large. This results in a

minimal longitudinal resistance and, via tensor inversion, minimal longitudinal conductivity.

At these integer filling factors, a plateau like Hall resistance with exact quantization

ρxy =
h

νe2 ; ν = 1;2; � � � (1.6)

has first been observed (in a silicon inversion layer) by von Klitzing, Dorda, and Pep-

per [vK80]. The vanishing longitudinal resistance with a quantized transverse resistance

is called the integer quantum Hall effect. More realistic models of the density of states con-

sider extended states in the center of the Landau levels, framed by localized states. In the

edge-channel picture the quantized Hall plateaus are explained by one-dimensional chan-

nels at the sample boundaries, with conductance e2=h each, separated by insulating regions.

Around integer filling factors, backscattering is inhibited because the bulk two-dimensional

electron system is isolating. We will encounter a similar transport model in Section 5.3.

In exceptionally clean two-dimensional electron systems, minima in the longitudinal re-

sistance and quantized Hall resistances are observed also at fractional filling factors [Tsu82].

As in the integer quantum Hall effect, which results from an energy gap in the density of

states within which no electrons are able to carry current, the fractional quantum Hall effect

also results from an energy gap. This gap, however, is caused by the interaction of electrons

with each other in the presence of a magnetic field. The ground state is characterized by a

minimal Coulomb energy of all participating electrons. At certain values of the magnetic

field, a highly symmetric many-particle solution, called the ’Laughlin state’ [Lau83], satis-

fies this criterion by putting 1=mth of an electron on average at each magnetic flux quantum

site (m = 1;3;5; � � � is an odd number). To find the minimum excited state we note that

the minimum displacement distance by which we can vacate a site in the two-dimensional

electron gas is characterized by the extent of a wave function, lB = h̄=(eB), the magnetic

R. A. Deutschmann Two dimensional electron systems in atomically precise periodic potentials (2001)
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1.2. SUPERLATTICES 7

length [Gra98]. This discrete minimum distance results in a discrete increase in the Coulomb

energy of the system, defining a gap.

The fractional quantum Hall effect is a correlated electron phenomenon since electron

interactions define the gap, making it critically different in character from the non-interacting

integer quantum Hall effect. In the last two decades the fractional quantum Hall effect has

become an intensely studied field of correlated electron physics, joining the only handful

strongly correlated many-particle phenomena known to date, including superconductivity,

superfluidity, and magnetism. In Chapter 6 we report on ferromagnetic phenomena observed

in the fractional quantum Hall regime.

1.2 Superlattices

In natural crystals, the periodicity of the atomic lattice leads to an energy spectrum charac-

terized by energy bands [Blo28], instead of discrete levels as in atoms and molecules. The

corresponding quantum mechanical states are characterized by a band index ν, and the Bloch

vector~k. Their energy is given by the dispersion relation E ν(~k). An example of a natural

crystal and its corresponding electronic band structure is shown in Figure 1.2(a). Gallium-

arsenide (GaAs) crystallizes in the zincblende structure with a lattice constant a = 5:65 Å,

and the energy scale of the bands and of the band gap is electron volts.

A superlattice is a periodic potential within the natural crystal potential, and many of

the properties encountered in natural crystals are also found in these artificial crystals, but

on a different scale (see Figure 1.2(b)). Typical period lengths d in superlattices are tens

of nanometers, and energies are best plotted on a meV-axis. As in natural crystals, the

periodicity of the potential leads to a continuous energy spectrum, and in analogy to the

bands here we speak about minibands. The Brillouin zone boundary k0 = π=d in superlattices

is reduced by a factor d=a � 30 to 150 with respect to natural crystals. These reductions of

the energy and reciprocal space scales allow one to explore previously unaccessible regimes

in the parameter space spanned by magnetic field, electric field, temperature, scattering time,

and Fermi energy.

The theoretical proposal of the semiconductor superlattice by Esaki and Tsu [Esa70] was

only a beginning. Significant advances in material sciences were necessary for its success-

ful realization using epitaxial growth methods. As with the fabrication of two-dimensional

systems, molecular beam epitaxy of ultra-pure source material in ultra-high vacuum is the

method of choice for fabricating atomically precise GaAs/AlGaAs superlattices. The alu-

R. A. Deutschmann Two dimensional electron systems in atomically precise periodic potentials (2001)
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8 CHAPTER 1. INTRODUCTION

Figure 1.2: Natural (a) and artificial (b) crystals and band structures.

minum content x defines the larger AlxGa1�xAs band gap, which translates in part to a con-

duction band offset ∆Ec = 0:8�x (eV) between GaAs and AlxGa1�xAs at the Γ-point [Ins93].

Band structure engineering in the parameter space of well thickness lw, barrier thickness lb
(lw + lb = d), and barrier energy ∆Ec allows us to custom design artificial band structures.
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1.3. SUPERLATTICE FIELD EFFECT TRANSISTOR 9

Figure 1.3: Fabrication of the superlattice field-effect transistor. (a) First growth step on

(001) semi-insulating GaAs substrate: Undoped superlattice between two n+ GaAs contacts.

(b) In-situ cleavage and second growth step on the freshly exposed (110) GaAs surface:

GaAs layer, AlAs barrier, and n+ GaAs gate contact. (c) Sample processing after the growth:

Etching to lower n+ GaAs contact, metallization of source, drain and gate, sample cutting

into pieces of 250 µm width, and wire bonding.

1.3 Superlattice field effect transistor

Both two-dimensional systems and superlattices have been at the heart of semiconductor

physics during the last thirty years. In this thesis we explore the world created by combining

both in a single semiconductor device, called the superlattice field effect transistor (SLFET).

The SLFET is fabricated by the cleaved-edge overgrowth (CEO) technique, invented at Bell

laboratories by L. Pfeiffer and coworkers [Pfe90]. The uniqueness of the CEO technique lies

in the fact that low-dimensional electronic systems can be fabricated to atomic precision not

only in one, but in two, or even three perpendicular spatial directions, and that this system is

buried in the bulk of the semiconductor, unaffected by surface effects, such as surface deple-

tion. Examples of previously fabricated devices include ballistic one-dimensional systems

(quantum wires) [Yac96] [Rot00] and zero-dimensional systems (quantum dots) [Weg97].
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Figure 1.4: Cleaved-edge overgrowth technique (drawing by W. Wegscheider) .

Details on the latter system, and about the CEO technology, can be found in [Sch98a]. The

SLFET is based on a design by Stormer [Sto91b].

The fabrication scheme of the SLFET is shown in Figure 1.3. In the first MBE step,

on a semi-insulating two-inch (001) GaAs wafer an undoped GaAs/AlGaAs superlattice is

grown between two 1 µm thick n+ GaAs contacts, silicon doped to 2�1018 cm�3. Standard

(001) growth parameters are used. The specific parameters of the superlattices investigated

in the work are given in the respective chapters. In reference samples the superlattice is

replaced by bulk AlGaAs. The resulting devices are called cleaved-edge overgrowth field-

effect transistors (CEOFETs). The wafer is taken out the MBE, chemically thinned down

to a thickness of 100 µm using a solution of 12% bromine in methanol, and cut into pieces

of 7 mm by 7 mm. The position of the CEO cleave is scribed into the sample surface with

a diamond tip, the samples are cleaned, and reinserted into the MBE, using a custom made

tantalum sample holder (see Figure 1.4). After desorption of surface oxygen, when ultra-high

vacuum conditions are met again, the samples are cleaved in situ by a tantalum bar, and the

growth commences immediately thereafter on the freshly exposed (110) surface. At a lower

growth temperature, smaller growth rate, and higher arsenic pressure, the layer sequence

q nm GaAs, 100 nm AlAs, and 200 nm n+ GaAs (silicon doped to 2�1018 cm�3) is grown,

R. A. Deutschmann Two dimensional electron systems in atomically precise periodic potentials (2001)
Ph.D. Dissertation. Selected Topics of Semiconductor Physics and Technology, ISBN 3-932749-42-1
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where q varies between zero and a few tens of nm depending on the SLFET design.

With standard optical lithography, wet chemical etching and PdGeAu metallization pro-

cessing steps both (001) n+ GaAs layers are contacted, to serve as source and drain. The

(110) n+ GaAs layer is contacted to serve as a gate. Finally the 7 mm wide samples are cut

into pieces of 250 µm width, glued with conductive silver onto the gold coated surface of a

GaAs wafer piece, and wire bonded into a ceramic chip carrier.

The transistor is operated by applying a positive gate voltage with respect to source and

drain, and measuring the source-drain current in dependence of the source-drain voltage.

What we have achieved with the SLFET is a hybrid superlattice two-dimensional electron

system. The field-induced electron gas resides at the interface between the superlattice and

the gate barrier, and the thickness q of the (110) GaAs layer determines the overlap of this

electron gas with the superlattice, and thus the modulation strength. Details on this system

and self-consistent calculations will be presented in subsequent chapters.

Our SLFET differs from the original device invented by Stormer et al. [Sto91b] in three

important ways. First we use n+ GaAs source and drain contacts instead of n+ SL contacts,

which is crucial to avoid leakage currents through the bulk superlattice at finite source-drain

bias. Second we use an n+ GaAs gate instead of a fixed doping to obtain tunable electron

density and higher electron mobility due to the absence of remote ionized impurity scattering.

Third, a new degree of freedom in band structure design is introduced since by proper choice

of the (110) GaAs layer thickness q, the strength of the potential modulation can be tuned

without changing the superlattice itself.

1.4 Outline of this thesis

The SLFET represents the intersection of a superlattice with a two-dimensional electron

system, and can be considered as an array of coupled quantum wires. Depending on the

modulation amplitude, or the coupling between the wires, very different regimes can be

investigated. In Figure 1.5 the chapters of this thesis are put in relation to these regimes.

For weakly coupled wires, the SLFET has one-dimensional character, electronic states are

discrete, and transport between the wires is expected to occur via resonant tunneling. The

system is best described by a tight-binding model, which considers the coupling between

the wires as a perturbation. For intermediate coupling, the overlap between the wire states

becomes significant, and we will be able to investigate miniband transport. The regime of

strong coupling is best described by a two-dimensional electron system with weak periodic
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Figure 1.5: Graphical outline of this thesis. The different chapters investigate the different

regimes observable between one-dimensional and two-dimensional systems.

perturbation. Electron systems in this regime are often referred to as lateral superlattices.

The gaps between the minibands become narrow, and magnetotransport experiments will

reveal two-dimensional electron orbits. Finally, for the case of very strong coupling, thanks

to unparalleled high electron mobility and electron density tunability, the SLFET represents

an ideal vehicle for electron density dependent studies in the fractional quantum Hall regime.

Chapter 2 is concerned with magnetotransport in the intermediate coupling regime. The

unparalleled situation investigated in this chapter is characterized by a commensurability

of the miniband width, the Fermi energy, and the magnetic energy. In the first part of the

chapter we calculate the zero-magnetic field band structure by a Kronig-Penney model, and

more sophisticated, by self-consistently solving the coupled Schrödinger/Poisson equations.

These calculations give insight into the electron distribution in the SLFET at equilibrium.

Based on this band structure, and on the semi-classical equations of motion, we discuss

the electron orbits under the application of a magnetic field. Different types of orbits are

found, that are expected to leave characteristic fingerprints in the magnetoresistance. In
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the second part of this chapter, we find indeed striking signs of these qualitatively different

orbits in magnetotransport experiments. In the third part of the chapter we present fully

quantum mechanical results for the electron energy spectrum and the density of states, suited

to explain not only the limiting cases tractable with the semiclassical model, but also the

transition region of comparable miniband and magnetic energy.

Chapter 3 revolves around non-equilibrium electrons in artificial band structures and

contributes to the quest for the electrically driven Bloch oscillator. We show clear signatures

of the fact, that the miniband width represents an upper limit to the energy that conduction

electrons can acquire in an applied electric field. Following a discussion of transport models

and self-consistent band structure calculations, current-voltage data of SLFETs with differ-

ent miniband widths are presented, compared to reference samples, and explained. In the

SLFET the electric field is stabilized owing to the presence of a metallic gate, and to its

lower dimensionality with respect to bulk superlattices. Folded superlattice phonons appear

to critically influence electron transport. The observed negative differential resistance peak

is found to characteristically shift in a perpendicular magnetic field. In the last part of this

chapter we demonstrate ultra-short channel vertical field effect transistors.

In Chapter 4 we study the tunneling transport across an array of quantum wires, corre-

sponding to a weakly coupled superlattice. In non-equilibrium transport, source-drain cur-

rent peaks result from resonant tunneling between wire states, governed by the simultaneous

conservation of energy and momentum. These resonances are found to depend characteristi-

cally on the magnetic field strength and orientation.

Chapter 5 will most certainly appeal to anybody excited by multi-band structures, elec-

tron orbits therein, and semiclassical models. Central results of this work on weakly modu-

lated electron systems are a direct visualization of different closed electron orbits in a mul-

tiply connected band structure, the proof of a quantum interference effect between different

electron orbits, reminiscent to the Aharonov-Bohm effect, and, deduced from this effect, the

first explanation, based on the artificial band structure, of the previously observed commen-

surability oscillations. We begin this chapter with self-consistent calculations of the electron

density distribution in the SLFET. Then we present magnetotransport experiments, which are

subsequently explained in a semiclassical model entirely from the artificial band structure.

A relation is established to results in metal physics and other two-dimensional conductors.

An extra section in this chapter is dedicated to a technique developed to fabricate lateral sur-

face doped superlattices. We demonstrate its flexible use by a variety of commensurability

effects, both in one- and two-dimensionally modulated systems.
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Chapter 6 contributes to our current understanding of the fractional quantum Hall effect,

and quantum phase transitions between spin-polarized and spin-unpolarized states. This fer-

romagnetic phase transition is observed at the fractional filling factor ν = 2=3 as a hysteresis

in the sample resistance, and is studied in dependence of electron density, magnetic field,

temperature, time, and radio-frequency irradiation. In this chapter we exploit the unpar-

alleled combination of high electron mobility and density tunability in the SLFET, and our

results generally apply to two-dimensional electron systems. Additionally, we have evidence

of an intensifying effect to the domain formation due to the underlying superlattice.

We conclude in Chapter 7 with a summary and an outlook.
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Chapter 2

Magnetotransport in the Lowest

Miniband

We are interested in the electronic structure of a two-dimensional system in

a regime, where the magnetic energy and the zero-field band width are of com-

parable magnitude. Thus neither the magnetic field nor the periodic potential

giving rise to the band structure can be treated as a perturbation. Experimen-

tally this regime can be explored either by using bulk crystals and very high

magnetic fields, or, at more comfortable magnetic field strengths of a few Tesla,

by reducing the band width to the meV range in an artificial crystal, namely a

superlattice. Theoretically, we gain insight to this problem by semiclassical and

quantum mechanical calculations.

Following a short review of relevant work in Section 2.1, we discuss the mo-

tion of electrons in an artificial band structure and a perpendicular magnetic field

semiclassically in Section 2.2. Low temperature magnetoresistance data is pre-

sented in Section 2.3, which can in part be understood with the tools developed

so far. A detailed insight to the problem is elaborated in Section 2.4 by a full

quantum mechanical calculation of the density of states, which allows to draw

conclusions for the electronic transport.

15



16 CHAPTER 2. MAGNETOTRANSPORT IN THE LOWEST MINIBAND

2.1 Review

In this chapter we study equilibrium magnetotransport in the lowest miniband, which has a

band width ∆ comparable to the magnetic energy h̄ωc at a field of a few tesla. Due to the

large band gap, the next miniband does not play any role here. Experimentally, this regime is

inherently difficult to achieve, because for narrow minibands in combination with wide gaps

short period superlattices are required, which at the same time must host a two-dimensional

electron gas of sufficient mobility to allow for magneto-quantum oscillations.

In the literature we find two main classes of lateral superlattices. On the one side, the

so-called surface lateral superlattices are based on semiconductor heterostructures, which

are modulated by changing the surface properties. These superlattices are suited for gener-

ating weakly modulated electron systems with rather long period lengths (on the order of

100 nm). As a result, many minibands are occupied at electron densities ns > 1�1011 cm�2,

and minigaps are narrow. These superlattices will be reviewed in Chapter 5. On the other

side, short period superlattices have been fabricated using self-organizing mechanisms rather

than lithography. One exploits the corrugated growth on high-index surfaces and the fact that

atomic steps modify the electrostatic potential in a two-dimensional electron gas. On vici-

nal (111)B GaAs surfaces multi-atomic steps with a periodicity of a few tens of nanometers

were generated [Nak98] [Sak99], similar devices were fabricated on GaAs (001) vicinal

planes [Fuk88] [Mot89] [Tsu90]. All these structures have the advantage of small period

modulations, but due to the self-organized growth, the superlattices are irregular and mobil-

ities are generally low.

With the cleaved-edge overgrowth technique, the fabrication of short-period, highly

regular and high mobility lateral superlattices is possible. Stormer et al. [Sto91b] have

demonstrated magnetoresistance oscillations in high-mobility lateral superlattices with pe-

riod d = 10 nm. The width of their miniband ∆= 22 meV, however, was too large for shifting

the Fermi energy into the minigap. Thus they observed only two-dimensional behavior. The

other extreme was reported by Ohno et al. [Ohn95], who measured a few periods of mag-

netoresistance oscillations in a sample of almost uncoupled parallel quantum wires, thus

probing one-dimensional subbands. In a recent paper [Maj00], the Tsui group at Prince-

ton measured an effective mass enhancement of two-dimensional electrons in a miniband

by temperature dependent magnetoresistance measurements. Even though they were able to

change the electron density by means of a metal gate, they observed purely two-dimensional

behavior.
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In this chapter we demonstrate for the first time the drastic changes that accompany

the shifting of the Fermi energy from within the miniband into the minigap. In magneto-

transport we witness the transition from a two-dimensional to a one-dimensional behavior,

and we are able to explain the experimental data in semiclassical and quantum mechanical

terms. A good source of information for the general understanding of conduction electrons

in band structures, written for metals, include the short introduction by Pippard [Pip65],

the excellent review by Shoenberg [Sho84], and the tutorials by Chambers [Cha90] and

Brauer [Bra72]. Superlattice electron motion in magnetic fields has been reviewed by

Jan-Kees Maan [Maa87]. Some results of this chapter have previously been published

in [Deu00a].

2.2 Qualitative model using the zero-field band structure

In this section we lay the foundation to understanding the physics of conduction electrons in

a band structure of a one-dimensionally modulated system. After a description of the SLFET

used for this chapter, we calculate its overall band structure in a Kronig-Penney model, and

its detailed band structure self-consistently, including minibands that occur due to the two-

dimensionality of the electron gas. We analytically calculate the zero-field density of states,

and highlight the electron trajectories in real and reciprocal space. The interplay between the

three energy scales miniband width ∆, magnetic energy h̄ωc, and Fermi energy EF is then

found to result in a intricate phase diagram, with prevalence of closed orbits, open orbits,

and magnetic breakdown orbits. This phase diagram will then be explored experimentally in

the following section.

2.2.1 Sample structure

The structure of the sample investigated in this chapter is shown in Figure 2.1. The undoped

superlattice with period d = 15 nm consists of 3 nm Al0:32Ga0:68As and 12 nm GaAs repeated

100 times. The superlattice is sandwiched between two n+ GaAs contacts, doped to 2�
1018 cm�3, and grown on a semi-insulating (001) GaAs wafer. After cleaving the sample

along the (110) plane the regrowth in (110) direction consists of a 100 nm Al0:32Ga0:68As

barrier and another n+ GaAs contact layer. Ohmic contacts are evaporated to the upper and

the lower n+ GaAs layer, serving as source and drain contacts, as well as to the (110) n+

GaAs layer, which serves as a gate. By positively biasing the gate with respect to source
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18 CHAPTER 2. MAGNETOTRANSPORT IN THE LOWEST MINIBAND

Figure 2.1: SLFET sample structure and definition of the coordinate system and magnetic

field direction.

and drain, a two-dimensional electron gas is field induced at the superlattice-AlGaAs barrier.

The length of the electron channel is given by the thickness L = 1:5 µm of the superlattice,

the channel width is W = 250 µm. The equilibrium electric properties of this modulated

two-dimensional electron system in the presence of a perpendicular magnetic field are the

focus of this chapter.

2.2.2 Kronig-Penney band structure calculation

In the Kronig-Penney model [dLK31] the Schrödinger equation

H Ψ�
�

p2
x(x)

2m�(x)
+V (x)

�
Ψ = E Ψ (2.1)

is solved with a potential V (x) that consists of periodically repeated square wells of depth

V0, width lw separated by barriers of thickness lb. The superlattice period is d = lw + lb. The

band structure is obtained by matching propagating or evanescent envelope functions at the

boundary of consecutive layers. The envelope functions are the solutions of the effective

Hamiltonian in Equation (2.1) in which both band edges and effective masses [Bas81] are

position dependent. The effective mass jumps modify the boundary conditions imposed to
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Figure 2.2: (a) Calculated band structure in the Kronig-Penney model. (b) Enlargement of

the lowest subband. The dotted line represents a cosine function. The electron momentum is

normalized to the Brillouin zone boundary k0 = π=d.

the eigenstates of the effective-mass Hamiltonian. The energy-momentum dispersion rela-

tion E(kx) is obtained by solving the implicit equation

cos(kx d) = cos(kw lw) cosh(kb lb)� 1
2

�
χ� 1

χ

�
sin(kw lw) sinh(kb lb) (2.2)

where

kw =
1
h̄

p
2mGaAs E(kx) (2.3)

kb =
1
h̄

p
2mAlGaAs (V0�E(kx)) (2.4)

χ =
mAlGaAs kw

mGaAs kb
: (2.5)

The parameters used in our calculation are: mGaAs = 0:067m0, mAlGaAs = mGaAs +

0:083 x m0 [Ins93] where x = 0:32 is the Al-content in the barriers, V0 = 0:8x (eV) [Ins93].
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The resulting dispersion relation is shown in Figure 2.2(a). The lowest miniband has a

width of ∆=3.7 meV, and a ground state energy with respect to the GaAs conduction band of

21.7 meV. This energy difference between the superlattice and the GaAs conduction band is

crucial to avoid leakage currents through the bulk superlattice away from the cleavage plane.

The second miniband is separated from the first miniband by a quasi-gap of 60 meV. Due to

this large energy gap this and the third miniband will not be occupied in the present study

and can therefore be neglected.

In Figure 2.2(b) we demonstrate that the lowest miniband can be well approximated by a

cosine function (dotted line). A cosine function is indeed obtained when the right hand side

of Equation (2.2) is expanded in the vicinity of the quantization energy E0 of the isolated

quantum well [Bas88]

E(kx) = E0 +
∆
2
(1� cos(kx d)) (2.6)

This is the result also found in the tight-binding model [Ash76].

One has to be aware of the assumptions and approximations involved with using the

Kronig-Penney model. First, this model is strictly one-dimensional, and excited states in the

z-direction are therefore not considered. Second, the Kronig-Penney model is based on a

single-particle theory, any self-consistent effects are neglected. Both of these limitations are

cured by a full two-dimensional and self-consistent quantum mechanical calculation.

2.2.3 Self-consistent band structure calculation

The quantum-mechanical states in the SLFET are self-consistently calculated using a com-

puter program developed by M. Rother [Rot99a][Rot00]. Input parameters to the program

are the material parameters in the (x;z) plane, and appropriate boundary conditions. In the

case of the SLFET we model 16 periods of the superlattice, plus the gate dielectric and the

gate contact. The two-dimensional electron gas and the gate contact represent two different

Fermi systems. The difference in their chemical potential is defined as the gate voltage Ug.

A total of 100 subbands are calculated for different gate voltages. In Figure 2.3 we show the

resulting electron density distribution n(x;z) for a mean two-dimensional electron density

of ns = 1:7� 1011 cm�2. The density n(x;z) is obtained by summing all occupied electron

states up to the Fermi energy using the Fermi distribution at T = 300 mK. The electrons

are localized at a distance of about 10 nm from the interface between superlattice and gate

barrier, and the electron density almost vanishes in the region of the superlattice barriers. To
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Figure 2.3: Self-consistently calculated electron density distribution. (a) Gray-scale coded

electron density distribution in the (x;z) plane. The line z = 0 marks the interface between

the superlattice and the gate barrier. One superlattice quantum well is marked by GaAs, and

one barrier by AlGaAs. (b) sheet electron density integrated over z. The circles mark the

calculated density, while the solid line is a cosine function approximation to the integrated

electron density. The mean two-dimensional electron density is ns = 1:7�1011 cm�2.

a very good approximation the integrated two-dimensional electron density is described by

a cosine function.

The band structure in the SLFET is readily obtained by plotting the energy of the calcu-

lated electronic states versus the corresponding momentum, as shown in Figure 2.4. Interest-

ingly, energetically above the lowest miniband further bands of the same symmetry appear.

These bands stem from excited electronic states in the z direction. For all electron densi-

ties obtainable with the SLFET these bands are unoccupied in equilibrium transport and can

therefore be neglected. Our calculation further shows that for the lowest quantum well state

all minibands have the same band width of ∆ = 3:3 meV, and that ∆ is only very weakly

dependent on the electron density. Only the offset between the minibands increases with in-
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Figure 2.4: (a) Self-consistently calculated band structure for an electron density of ns =

1:7� 1011 cm�2. The squares are the calculated points, the solid lines are a cosine func-

tion approximation to the calculated bands, and the dotted line is the free electron dispersion

relation. (b) Real space plot of the lowest electronic state to the first excited miniband (un-

occupied). (c) Lowest electronic state of the ground miniband (occupied).

creasing electron density. The band width obtained here is very close the the Kronig-Penney

result.

2.2.4 Calculation of the zero-field density of states

In a one-dimensional superlattice the electron energy spectrum is given by

E(~k) = Ex(kx)+
h̄2k2

y

2m�
: (2.7)

The first term is a periodic function with period 2π=d, while the second term describes

the free electron motion in y direction. We have shown in Sections 2.2.2 and 2.2.3 that

for the SLFET at hand using the Kronig-Penney model, or the tight-binding approximation,
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Figure 2.5: Fermi contours for different Fermi energies. (a) and (b) EF < ∆. (c) EF = ∆. (d)

EF > ∆.

the dispersion in superlattice direction Ex(kx) is well described by a cosine function. We

therefore write

E(~k) =
∆
2
(1� cos(kx d))+

h̄2k2
y

2m�
: (2.8)

In Figure 2.5 we plot the energy surface E(kx;ky), and additionally different Fermi energies

as horizontal planes. In x direction the cosine shape appears, while parabolas mark the

dispersion along the y direction. The electrons relevant for electronic transport populate the

intersection between the energy surface E(kx;ky) and the Fermi plane EF.

Given the dispersion relation (2.8) the density of states D(E) can analytically be calcu-
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Figure 2.6: (a) Dispersion relation in superlattice direction (solid line) and in the free electron

direction (dotted line). The energy is normalized to the band width ∆. (b) Calculated density

of states normalized to the two-dimensional density of states D0 (solid line, bottom axis) and

integrated density of states yielding the electron density (dashed line, top axis).

lated using

D(E) =
2

(2π)2

Z
δ
�

E�E(~k)
�

dkxdky =
1

2π2

I
E(~k)=E

dk���∇kE(~k)
��� (2.9)

and we find after integration

D(E)

D0
=

8>>>><
>>>>:

2
π

s
m�

x

m�
y

K

�
E
∆

�
; for 0 < E < ∆;

2
π

s
m�

x

m�
y

r
∆
E

K

�
∆
E

�
; for ∆ < E;

(2.10)

where K(m) =
R π=2

0 (1�m2 sin2 ϕ)1=2dϕ is the complete elliptic integral [Abr65], and D0 is
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the density of states of the free two-dimensional electron gas

D0 =
m�

πh̄2 : (2.11)

The two electron masses

m�
x = h̄2

�
∂2E
∂k2

x

��1

kx=0
=

2h̄2

∆d2 (2.12)

m�
y = m� = 0:067 m0 (2.13)

are defined by the band curvature at zero energy along the x and the y direction, respectively.

Recall that K(0) = π=2 and K(1) = ∞.

The calculated density of states is shown in Figure 2.6. At the miniband minimum

D(0)=D0 =
q

m�
x=m�

y > 1 reflects the increased electron mass in superlattice direction. At

the band edge E = ∆ the density of states has a logarithmic singularity, and in the quasi gap

for E > ∆ it decreases proportional to the square root of E, as expected for a one-dimensional

system.

We integrate the calculated density of states (2.10) to obtain the relation between Fermi

energy and electron density ns, also shown in Figure 2.6. For ns < 2:2�1011 cm�2 the Fermi

energy lies within the miniband, while for ns > 2:2�1011 cm�2 the miniband is completely

filled and the quasi gap is occupied. We expect a drastic change in the magnetotransport as

the Fermi energy is raised from the miniband into the quasi-gap as the physics changes from

a two-dimensional to a one-dimensional behavior.

2.2.5 Electron trajectories in the artificial band structure

We discuss the electron motion semiclassically in the presence of a perpendicular magnetic

field using the zero-field band structure. This approximation should only be valid as long as

the magnetic energy is smaller than the band width h̄ωc < ∆, which implies for the SLFET at

hand B <2 T. The semiclassical electron motion in a magnetic field ~B = (0;0;B) is described

by

~v(~k) =
1
h̄

∇kE(~k) (2.14)

h̄
d~k
dt

= �e~v(~k)�~B: (2.15)
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Figure 2.7: Fermi contours for different Fermi energies in k space. For Fermi energies

within the miniband EF < ∆ electrons perform closed orbits within one Brillouin zone, while

for larger Fermi energies electrons can only travel along open orbits across Brillouin zone

boundaries.

Electron motion proceeds along contours of constant energy (Fermi contour). After integra-

tion we find
~k(t)�~k(0) =�e

h̄
(~r(t)�~r(0))�~B; (2.16)

which states that orbits in reciprocal space correspond to orbits in real space, rotated by

�π=2 and scaled by l�2
B , where

l2
B =

h̄
eB

(2.17)

is the magnetic length.

In Figure 2.7 we show k space orbits for different Fermi energies. These Fermi contours

correspond to the lines of intersection between the electron energy surface and the Fermi

plane, as was shown in Figure 2.5. Two different types of orbits can be distinguished. First,

for Fermi energies within the miniband EF < ∆ electrons perform closed orbits. Second, for

larger Fermi energies, contours join across the Brillouin zone boundaries kx = k0 = �π=d
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and electrons can only perform open orbits along snake shaped lines. This transition from

closed to open orbits has drastic implications for the magnetoresistance, as discussed in the

following.

2.2.6 Closed electron orbits

For EF < ∆ the electron motion is periodic with a period tc given by

tc =
2π
ωc

=
h̄2

eB

I
E(~k)=E

dk���∇kE(~k)
��� =

h̄2

eB
∂Ak(E)

∂E
; (2.18)

where ωc is the cyclotron frequency and Ak(E) the k space area enclosed by the electron orbit.

For the special case of a free electron, using E = h̄2k2=(2m�) we find A(E) = 2πm�E=h̄2 and

ωc = eB=m� as expected. For the general case it is therefore customary to define a field

independent electron cyclotron effective mass mc by ωc = eB=mc. Using this definition and

comparing Equations (2.10) and (2.18), the density of states can be written as

D(E) =
mc(E)

πh̄2 : (2.19)

Thus the cyclotron effective mass is directly proportional to the density of states. It equals

mc =
p

mxmy at the miniband minimum (cf. Equation (2.10)), and has a logarithmic singu-

larity at the miniband edge. Experimentally the cyclotron effective mass can be determined

by the temperature dependence of the magnetoresistance oscillations.

The semiclassical quantization condition imposed on stationary states corresponding to

closed orbits (Bohr-Sommerfeld quantization rule) readsI
~pd~r = (n+ γ)h; (2.20)

where n is an integer, γ a phase factor, and the integration of the momentum ~p = h̄~k+ e~A is

along the classical cyclotron orbit. Using the equation of motion (2.15) and Stoke’s theorem

we find

Φ = BAr = (n+ γ)Φ0 (2.21)

stating that the enclosed real space area is threaded by an integer number of magnetic flux

quanta Φ0 = h=e, give or take a phase factor. Using the conversion between real space and

k space areas Ar = l4
BAk derives Onsager’s expression

∆
�

1
B

�
=

2πe
h̄Ak

= 2
e

hns
(2.22)
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Figure 2.8: Landau level spacing vs. energy and electron density. As the effective mass

depends on the density of states (dashed line), the spacing of the Landau levels (dotted lines)

h̄ωc on the energy axis is not equidistant. In contrast, the Landau level spacing is equidistant

on the electron density axis, which is proportional to the gate voltage. The electron density

dependence on the energy is plotted as solid line.

relating the distance between the stationary states on the inverse magnetic field axis, and

the enclosed k space area, or equivalently the electron density. This expression will be used

to determine the electron density ns from the measured magnetoresistance, which directly

reflects the position of the stationary states (the Landau levels) on the magnetic field axis.

The Landau level spacing at fixed magnetic field is ∆E = h̄ωc and thus inversely pro-

portional to the cyclotron effective mass mc. When plotted on an energy scale, as shown

in Figure 2.8, the Landau level spacing therefore depends on energy, the spacing for exam-

ple decreases with increasing mc, corresponding to an increasing density of states. This is

unlike two-dimensional systems with parabolic energy dispersion and constant density of

states, where the Landau level spacing is constant. Interestingly, the Landau level spacing
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on an electron density scale ∆n is independent of energy, as graphically demonstrated in Fig-

ure 2.8. The reason lies in the proportionality between the cyclotron effective mass and the

density of states. Mathematically we prove

∆ns =
dns

dE
∆E = D(E)

h̄eB
mc(E)

=
eB
πh̄

: (2.23)

The independence of the Landau level spacing on the electron density is of great importance

for the experimental situation, where via the gate voltage the electron density is directly

controlled.

In order to resolve single Landau levels, their spacing should exceed their width. In other

words, the electron must perform at least one closed cycle before a phase breaking scattering

event occurs. If τq is the relevant quantum scattering time, the condition for the observability

of quantum oscillations reads

ωcτq > 1 (2.24)

This reasoning can be used to estimate the electron quantum scattering time from the exper-

imentally determined onset of the magnetoresistance oscillations, see Chapter 6.

In the classical Hall regime, where ωcτ < 1, electron motion in crossed electric Ex and

magnetic Bz fields is a superposition of a circular motion with frequency ωc and a uniform

drift perpendicular to Ex with a drift velocity~v = (0;Ex=Bz). The resulting orbit is a trochoid

as a consequence of the Lorentz force. Electron scattering is modelled by adding a term

proportional to ~v=τ to the equation of motion, where τ is the Drude scattering time. The

resulting conductivity tensor is

σ =
σ0

1+ω2
cτ2

 
1 �ωcτ

ωcτ 1

!
(2.25)

where σ0 is the zero-field conductance. This result is useful to determine the Drude scattering

time and the electron mobility from the low field magnetoresistance.

2.2.7 Open electron orbits

In Figure 2.9 we have calculated the real space orbits corresponding to the k space orbits

shown in Figure 2.7 for two different magnetic fields. For closed orbits, we have seen in

Equation (2.25) that the diagonal elements σxx and σyy tend to zero as B�2 for large fields.

This is intuitively clear, because the diagonal elements must be even functions of the mag-

netic field, and the electron orbits shrink with increasing field, localizing the electron more
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Figure 2.9: Fermi contours for different Fermi energies in real space. (a) Orbits calculated

for B = 1 T. (b) Orbits calculated for B = 2 T. For EF > ∆ the presence of open orbits leads

to a non-vanishing electron drift velocity in y direction even at high magnetic fields, while

electron motion in x direction is quenched. This results in a strong quadratic increase of the

magnetoresistance in x direction.

and more. However, this argument does not hold for the case of open orbits. The k space

orbit is still of limited width in the ky direction, but it now extends indefinitely in the kx di-

rection. Correspondingly, the real space orbit is of limited width in the x direction, and this

width gets smaller and smaller as B increases, but it extends indefinitely in y direction. It

follows, as above, that σxx falls as B�2, but the electron has a finite, non-vanishing average

velocity in y direction. This means that σyy tends to a finite limit at high fields, rather than

vanishing as B�2. The conductivity tensor for open orbits in the ’high field limit’ ωcτ > 1

therefore reads

σ ∝

 
(ωcτ)�2 �(ωcτ)�1

(ωcτ)�1 c

!
; (2.26)

where c is a constant. A rigorous treatment of the transport theory at the presence

of open orbits leads to the same result, and can be found in historical papers by Lif-

R. A. Deutschmann Two dimensional electron systems in atomically precise periodic potentials (2001)
Ph.D. Dissertation. Selected Topics of Semiconductor Physics and Technology, ISBN 3-932749-42-1



2.2. QUALITATIVE MODEL USING THE ZERO-FIELD BAND STRUCTURE 31

Figure 2.10: Electron orbits in the regime of magnetic breakdown calculated for a magnetic

field of 2 T and for two different Fermi energies in the band gap. (a) E = 1:1 ∆, (b) E = 1:5 ∆

shitz [Lif56][Lif57][Lif59][Lif60]. It is straightforward to derive the measured resistivity

tensor ρ

ρ = σ�1 ∝

 
c(ωcτ)2 ωcτ
�ωcτ 1

!
: (2.27)

The quadratically increasing magnetoresistance in x direction will be clearly evident in the

transport measurement in Section 2.3.2.

In the regime of open orbits, magnetoresistance oscillations are expected to disappear.

This is because the quantization condition (2.20) only applies to closed orbits. The energy

spectrum is therefore continuous, and experimentally we expect a quenching of the magne-

toresistance oscillations as soon as the band gap is occupied. This will experimentally be

shown in Section 2.3.2.
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2.2.8 Magnetic breakdown

Our description so far was entirely based on the zero magnetic field band structure. In the

low-field regime the magnetic field is a small perturbation to the given band structure, and

we have seen that when the Fermi energy is above the miniband, electron orbits open up

at the Brillouin zone boundaries, and magnetoresistance oscillations quench. In the limit

of high magnetic fields, however, conversely the modulation due to the superlattice can be

treated as a perturbation to the magnetic energy levels, and electrons will move in free par-

ticle orbits, namely the cyclotron orbits. In this regime, due to electrons performing closed

orbits, quantum oscillations are recovered. Historically, after the discovery of magneto-

oscillations by Priestley in 1960 with a frequency too high to be explained by known Fermi

surface extremal areas, Cohen and Falicov [Coh61] and Blount [Blo62] introduced the notion

of magnetic breakdown as a quantum mechanical tunneling of electrons between different

electron trajectories of equal energy, but separated in k space by a potential barrier. Two

examples for this process are shown in Figure 2.10. The condition for magnetic breakdown

is [Blo62][Sta67]

h̄ωcEF > E2
g ; (2.28)

where Eg is the potential energy the electrons have to overcome from one trajectory to the

other. This condition is milder than h̄ωc > Eg, which one would think intuitively. Essentially

by the introduction of a quantum mechanical tunneling process the deficiency of using the

zero-field band structure is healed.

In summary, using the zero-field band structure and semiclassical arguments, we have

developed a fundamental understanding of the physics of a modulated two-dimensional elec-

tron system in a perpendicular magnetic field. In Figure 2.11 we summarize our main find-

ings. At low electron densities, we expect to find magnetoresistance oscillations, that quench

when the Fermi energy is shifted into the band gap. Further we expect the magnetoresistance

oscillations to reappear in this electron density regime at sufficiently high magnetic fields due

to magnetic breakdown.

2.3 Experimental results

Magnetotransport data was obtained in a 3He bath cryostat at T = 330 mK unless otherwise

indicated. An AC measurement current of I = 10 nA (rms) was sourced to one of the top

contacts, keeping one of the bottom contacts grounded, while the AC voltage drop U was

R. A. Deutschmann Two dimensional electron systems in atomically precise periodic potentials (2001)
Ph.D. Dissertation. Selected Topics of Semiconductor Physics and Technology, ISBN 3-932749-42-1



2.3. EXPERIMENTAL RESULTS 33

Figure 2.11: Electron trajectory ’phase diagram’ in the (ns; B) plane.

measured between the other pair of contacts, see Figure 2.1. The sample resistance R(B) is

directly obtained by lock-in technique. The magnetic field was oriented perpendicular to the

two-dimensional electron system, and was swept at a rate of 264 mT/min with a maximum

field of 14 T. In the following we present magnetoresistance traces obtained at different

fixed gate voltages. A phenomenological description is given, clear periodicity over inverse

magnetic field is found, and from Landau plots the relation between electron density and

gate voltage is deduced.

2.3.1 Magnetoresistance for EF < ∆

Clear magnetoresistance oscillations can be observed for gate voltages above Ug = 0:15 V.

With increasing gate voltage the zero field resistance drops drastically until Ug = 0:45 V.

Figure 2.12 shows data obtained at Ug = 0:25 V. For low magnetic fields R is constant at

about R = 9:6 kΩ, and magnetoresistance oscillations start at B = 300 mT. We have indexed

the maxima of R (indicated by upward triangles) and plotted them versus the inverse of their

position in magnetic field. The resulting Landau plot is shown in the inset. Clearly the

observed maxima are 1=B periodic, and the linear fit intercepts at zero. This indicates that

the labelling corresponds to the filling factor, and that indeed the indexing of the maxima
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Figure 2.12: Magnetoresistance for gate voltage Ug = 0:25 V. In the inset the resistance

maxima are indexed and plotted versus inverse magnetic field.

(vs. the minima) is correct. At filling factor 2 the resistance has a maximum at R = 48 kΩ,

and for B > 2 T the sample becomes insulating. The electron density ns is calculated from

the slope of the linear fit to the Landau plot ∆�1 multiplied by e=h (all states, including the

spin-split states, are counted)

ns =
e
h

∆�1 (2.29)

We find with ∆�1 = 6 T a density of ns = 1:4�1011 cm�2.

At Ug = 0:4 V the zero field resistance has dropped to R = 370Ω, as shown in Fig-

ure 2.13. At low magnetic fields R is increasing quadratically, until at around B = 300 mT

first magnetoresistance oscillations are observed. For larger magnetic fields R shows pro-

nounced maxima, and at B = 4:5 T a clear plateau of R = 12:9 kΩ � h=(2e2) appears. The

Landau plot, drawn from the resistance maxima, again intercepts zero, and we obtain an

electron density of ns = 2:3�1011 cm�2.
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Figure 2.13: Magnetoresistance for gate voltage Ug = 0:4 V.

2.3.2 Magnetoresistance for EF > ∆

For gate voltages larger than Ug = 0:45 V we observe a drastic change in the magnetoresis-

tance, regarding the position of the resistance maxima and minima, and regarding the low

field magnetoresistance. An example for Ug = 0:5 V is given in Figure 2.14. Although the

zero field resistance has dropped further to R = 210 Ω as compared to the Ug = 0:4 V trace,

the quadratic magnetoresistance increase is much stronger. At the same time the onset of the

oscillations has shifted to a higher magnetic field of B = 440 mT. Most strikingly, however, a

Landau plot with zero intercept is only obtained when the magnetoresistance minima are con-

sidered for B< 1:5 T, as indicated by downward pointing triangles. Only filling factors 8 and

below are associated with resistance maxima. An electron density of ns = 2:8� 1011 cm�2

is found.

This transition from maximum resistance to minimum resistance at integer filling fac-

tors, the quadratically increasing magnetoresistance, and the shift of the onset of the mag-

netoresistance oscillations to larger magnetic fields are even more developed for larger gate

voltages, as seen in Figure 2.15 for Ug = 0:6 V. The low field resistance is very well ap-
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Figure 2.14: Magnetoresistance for gate voltage Ug = 0:5 V.

proximated by a parabola, as indicated by the dashed line. The onset now occurs only at

B = 0:9 T, and the resistance minima, cast into a Landau plot with zero intercept, yield an

electron density of ns = 3:4�1011 cm�2.

The striking increase of the magnetoresistance is summarized in Figure 2.16. Here we

plot magnetoresistance data for gate voltages between Ug = 0:425 V and Ug = 0:9 V versus

magnetic field normalized by the electron density, such that regardless of the electron density

all filling factors lie at the same x-axis position. As discussed before, at integer filling factors

the resistance maxima present for low gate voltages evolve into resistance minima for large

gate voltages. From a different point of view it rather seems that the resistance minima

between integer filling factors evolve into maxima for increasing gate voltages. We point out

the rather large resistance values of above R = 100 kΩ obtained for large gate voltages.
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Figure 2.15: Magnetoresistance for gate voltage Ug = 0:6 V.

2.3.3 Gate voltage to electron density relation

We summarize the electron densities obtained from the Landau plots for gate voltages be-

tween Ug = 0:15 V and Ug = 0:9 V in Figure 2.17. The ns(Ug) relation is well approximated

by the linear relationship

ns = (5:7�0:1)�1011Ug [cm2=Vs] (2.30)

In a simple approximation the SLFET can be considered as a parallel plate capacitor,

with the two-dimensional electron system on the one side, and the n+ GaAs gate contact

on the other side, separated by the insulator AlGaAs of thickness d = 100 nm. Using the

dielectric constant for AlGaAs with 33% Al content ε=11.6 [Ins93], the following relation is

expected

n(theo)
s =

ε0 ε
d e

Ug = 6:4�1011Ug [cm2=Vs]: (2.31)

In this calculation quantum mechanical effects have been neglected. For example d should
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Figure 2.16: Overview of magnetoresistance traces for EF > ∆, plotted versus filling factor.

be assumed larger since the charge distribution in the two-dimensional electron system will

be located a distance away from the GaAs/AlGaAs interface.

2.3.4 Magnetoresistance maxima and minima in the (Ug;B) plane

It is instructive (and esthetic) to assume a bird’s perspective to view the magnetotransport

data in its entity. Since the magnetoresistance varies, depending on the gate voltage and the

magnetic field, over orders of magnitudes, we extract a value V indicating the magnetoresis-

tance maxima and minima using the following recipe

V =�∂2R(Ug;B)=∂U2
g

j∂R(Ug;B)=∂Ugj : (2.32)

Effectively the second derivative distinguishes, by means of the sign, between maximum

and minimum, while the first derivative in the denominator vanishes at maxima and minima,

thus emphasizing these points. In Figure 2.18 we plot the resulting V (Ug;B) color coded,
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Figure 2.17: Experimentally deduced relation between the applied gate voltage and the elec-

tron density.

marking maxima red and minima blue. We overlay the integer filling factors ν according to

EF = ns=D(EF) = h̄ωc ν: (2.33)

Using the zero field density of states D(EF) = m�=(π h̄2) we obtain

ns =
eB
π h̄

ν (2.34)

and the ns(Ug) relation is known from Figure 2.17.

The Landau fan appears as the most obvious pattern, and a closer look reveals the for-

merly discussed transition from maxima to minima along integer filling factors as the elec-

tron density and the magnetic field are increased. At odd filling factors for Ug < 0:45 V

maxima are found. The fine structure within the ν = 2 filling factor is due to the presence of

a plateau, to which our evaluation method for V reacts sensitive.
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Figure 2.18: Magnetoresistance maxima and minima in the (Ug; B) plane.
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Figure 2.19: Two different sample geometries and definitions for calculating the magnetore-

sistance. (a) Long and narrow sample, normally used for Hall bars. (b) Short and wide

sample, as is the case for the SLFET.

2.3.5 Transport model for EF < ∆

We calculate the magnetoresistance of a 2DES from intrinsic properties of the 2DES in

magnetic field, given by the longitudinal conductivity σxx and the transverse conductivity

σxy. We consider two extreme cases for the sample geometry, namely a long and narrow

sample, as used for standard Hall measurements, and a short and wide sample as for the

SLFETs. Both geometries are shown in Figure 2.19, and for the calculation differ in their

respective boundary conditions.

The Hall angle ΘH is defined by the angle between the current density ~j = ( jx; jy) and

the electric field ~F = (Fx;Fy)

cosΘH =
~j �~F
j F

(2.35)
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and we assume an ohmic relation between current density and electric field 
jx
jy

!
=

 
σxx σxy

�σxy σxx

!
�
 

Fx

Fy

!
: (2.36)

(A) Magnetoresistance of a long and narrow sample

When the length of the sample is much larger than its width W , sufficiently far away from

the contacts the current density j~jj= jx only has a component in the x direction, and jy = 0.

Therefore relation (2.36) reads 
jx
0

!
=

 
σxx σxy

�σxy σxx

!
�
 

Fx

Fy

!
: (2.37)

and the Hall angle

cosΘH =
~j �~F
j F

=
jx Fx

jx F
=

Fxq
F2

x +F2
y

=
1q

1+F2
y =F2

x

(2.38)

simplifies to

tanΘH =
Fy

Fx
=

σxy

σxx
: (2.39)

As can immediately be seen in the quantum Hall regime as σxx ! 0 the Hall angle ΘH ! π=2

and the electric field component in x direction vanishes.

From the voltage drop U between the voltage probes spaced a distance L apart and the

current I =
R

C
~j �d~r = jxW integrated over contour C , using Equations (2.38) and (2.39), the

measured resistance is given by

R =
U
I
=

L
W

Fx

jx
=

L
W

σxx

σ2
xx +σ2

xy
: (2.40)

This is the well known result, stating that in the quantum Hall regime the measured four-point

resistance vanishes.

(B) Magnetoresistance of a short and wide sample

When the sample is much wider than long, clear boundary conditions are imposed by the

presence of the pair of wide and parallel metallic contacts. Sufficiently far away from the

edges equipotential lines are parallel to the contacts the electric field j~Fj = Fx only has a

component in x direction with Fy = 0. Ohm’s law (2.36) in this case reads 
jx
jy

!
=

 
σxxFx

�σxyFx

!
: (2.41)
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and the Hall angle

cosΘH =
~j �~F
j F

=
jx Fx

j Fx
=

jxq
j2
x + j2

y

=
1q

1+ j2
y= j2

x

(2.42)

simplifies to

tanΘH =
jy
jx

=
�σxy

σxx
: (2.43)

As before in the quantum Hall regime as σxx ! 0 the Hall angle ΘH ! π=2, but in this

geometry the current density in x direction vanishes.

The macroscopic current is obtained by integrating the current density along contour C
as shown in Figure 2.19, neglecting the current across a length ∆W �W at the very edges

of the sample:

I =
Z

C
~j �d~r = jxW + jy L = σxx FxW +σxy Fx L (2.44)

If we assume that the voltage U drops linearly across the sample length L the measured

resistance is given by

R =
U
I
=

1
(W=L)σxx +σxy

: (2.45)

This result reminds of the known magnetoresistance for a Corbino geometry (ring shaped

2DES with inner and outer contact). These samples show an infinite resistance in the quan-

tum Hall regime, because transverse currents are not measured. For the SLFETs the re-

sistance also increases in the quantum Hall regime, but will be limited by the current in y

direction for large Hall angles ΘH > arctan(L=W ). In effect the resistance in the quantum

Hall regime is quantized to values of R = σ�1
xy = h=(2e2 i) i = 1;2; : : :. This is true for any

two-point measurement on a 2DES in a quantizing magnetic field [Fan83].

In a different picture result (2.45) can also be understood when the current between the

contacts is divided into two contributions. First to every Landau level below the Fermi

energy a conductivity of σ0 = 2e2=h is assigned. Second, the conduction through the bulk

of the 2DES in a simple approximation can be taken as being proportional to the density of

states at the Fermi energy D(EF). Thus the resistance depends inversely on the sum of both

contributions

R =
1

cD(EF)+ iσ0
: (2.46)

When the Fermi energy is between two Landau levels, current passes through the edge chan-

nels, and the resistance is quantized. Additional current is passed through the bulk of the
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2DES when the Fermi energy is located within a Landau level, and consequently the resis-

tance decreases.

In this short and wide geometry, an additional contribution to the magnetoresistance, the

geometric magnetoresistance, originates from the elongation of the current path at non-zero

Hall angles. This contribution is accounted for by the transformation [All88]

σxx ! σxx=(1+ω2
cτ2): (2.47)

The resulting measured magnetoresistance therefore is given by

R =

�
cD(EF)

1+(ωcτ)2 +σxy

��1

; (2.48)

where σxy = iσ0 is quantized at high fields, and

σxy =
ωcτ

1+(ωcτ)2 (2.49)

in the classical regime at low fields ωcτ < 1.

2.3.6 Comparison of theoretical and experimental magnetoresistance

We calculate the magnetic field dependent magnetoresistance using Equation (2.48). The

density of states in dependence of B is calculated by summing Landau levels in form of

Gaussians with height ∝ B and width ∝ B. Spin splitting is taken into account by the Zeeman

energy gµB B. Both conductivity components σxx and σxy are shown in Figure 2.20(a). In

Figure 2.20(b) the experimental magnetoresistance for gate voltage Ug = 0:4 V is compared

to the model. The three free parameters are the constant c relating σxx and the density

of states (DOS), the quantum scattering time, which determines the width of the Landau

levels, and the electron g-factor, which is expected to be much larger than the bulk value

of g = �0:44 due to electron-electron interactions. All relevant features of the data are

reproduced, most importantly resistance maxima at all integer filling factors, and plateaus

for low integer filling factors (here ν = 2 and ν = 4).

The reference sample at the same electron density shows similar behavior as the SLFET,

and is simulated by the model equally well, as shown in Figure 2.21. This demonstrates that

the SLFET in this density regime behaves like a normal 2DES.

The low density traces, where the magnetoresistance is far above the classically expected

Hall resistance, can be simulated well using a reduced scattering time. This leads to a reduced
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Figure 2.20: Transport model for the SLFET at Ug = 0:4 V. (a) Calculated conductivities σxx

and σxy. (b) Calculated and experimental magnetoresistance.

geometry effect for σxx, and to a much reduced σxy. The comparison between experiment

and calculation is shown in Figure 2.22.

In summary the SLFET behaves similar to a normal 2DES for Fermi energies within the

first miniband EF < ∆. This is manifested by maxima and plateaus at integer filling factors,

and a smaller resistance in between due to maxima in the DOS. In sharp contrast, for EF > ∆
in the experiment minima are observed at integer filling factors. This cannot be explained in

this model using the DOS of an unperturbed 2DES.
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Figure 2.21: Transport model for the reference CEOFET at Ug = 0:4 V. (a) Calculated con-

ductivities σxx and σxy. (b) Calculated and experimental magnetoresistance.

2.3.7 Magnetic breakdown

From the experimental magnetoresistance we extract the critical magnetic field Bc at which

magnetic breakdown occurs and magneto-oscillations recommence. In Figure 2.23 we show

the result, the error bars represent the uncertainty in the exact localization of the breakdown

field in the magnetoresistance data. The theoretical relation between the Fermi energy, the
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Figure 2.22: Transport model for the SLFET at Ug = 0:275 V. (a) Calculated conductivities

σxx and σxy. (b) Calculated and experimental magnetoresistance.

gap energy, and the magnetic field was given in Section 2.2.8

h̄ωcEF > E2
g : (2.50)

We realize that the gap energy to be overcome by the electron when tunneling between two

adjacent trajectories is

Eg = EF�∆: (2.51)
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Figure 2.23: Comparison of calculated (solid line) and experimental breakdown magnetic

field. In the inset the quantum scattering time τq, deduced from the onset of the magnetore-

sistance oscillations for Fermi energies within the miniband, is shown.

Using ωc = eBc=mc we can therefore write

Bc =
(EF�∆)2mc

h̄eEF
: (2.52)

For the conversion between Fermi energy and electron density, as well as the calculation of

the electron cyclotron effective mass, we make use of the results of Section 2.2.4. The solid

line in Figure 2.23 represents the calculated critical magnetic field. The agreement between

theory and experiment is excellent, noting that this theory requires no free parameter. At low

magnetic fields, and of course for electron densities ns < 2:3� 1011 cm�2, where orbits are

closed and no magnetic breakdown can occur, Bc is determined by the quantum scattering

time τq via ωcτ� 1. This determines a lower limit for the observable breakdown field.

As can be seen in the Figure, the lower limit for the onset of the magnetoresistance

oscillations is Bc = 300 mT. Using Equation (2.24)

ωcτq = 1 ) τq =
mc

eBc
;
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Figure 2.24: Resistance minimum at filling factor ν = 1 occurring only for magnetic fields

above B = 10 T, possibly indicating the phase transition from a spin-unpolarized to a spin-

polarized state at high magnetic fields.

we can estimate the quantum scattering time, using the calculated cyclotron effective mass

mc. As shown in the inset of Figure 2.23, the quantum scattering time τq varies between 2 ps

and 4 ps depending on the electron density.

2.3.8 Spin-polarized state at high magnetic fields

In our magnetotransport data no unambiguous signature of spin split Landau levels is ob-

served above filling factor v = 2. In Figure 2.18 at high magnetic fields B > 10 T, however, a

pronounced magnetoresistance minimum is found exactly at the position of the ν = 1 filling

factor. This possibly indicates the presence of a fully spin polarized state. We observe a lin-

ear dependence of the magnetic field position of this minimum on the gate voltage only above

B = 10 T. Below B = 10 T, the resistance minimum remains at the constant gate voltage of

Ug = 0:45 V.

In Figure 2.24 we plot the relevant magnetoresistance traces vs. gate voltage. Downward
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pointing triangles indicate the position of the minima, shifting linearly to smaller gate volt-

ages as the magnetic field is decreased as expected for a Landau level. This shift abruptly

ceases at Ug = 0:44 V, the minimum remains at this gate voltage until B = 7:5 T. An addi-

tional minimum at exactly the same position Ug = 0:44 V is found for the highest magnetic

field B = 14 T. We note that the gate voltage Ug = 0:44 V exactly corresponds to a Fermi

energy at the top of the miniband EF = ∆.

Recently, there has been increasing theoretical interest in the ground state of a two-

dimensional electron gas in a short-period lateral potential in magnetic field, with the

Coulomb electron-electron interaction included in the Hartree-Fock approximation. It

is found that the energy dispersion of the band intersected by the Fermi energy is en-

hanced [Man95]. Such an effect has been indirectly observed in the magnetoresistance

of short-period superlattices as an abrupt onset of the spin-splitting of the Shubnikov-de

Haas peaks, occurring only for a sufficiently strong magnetic field [Pet97]. In other words,

when the magnetic field increases, the system makes a first-order phase transition from spin-

unpolarized to spin-polarized states. The onset of the ν = 1 resistance minimum observed

in the SLFET at magnetic fields above B = 10 T may be a manifestation of such a phase

transition.

2.3.9 Density dependence of the zero-field resistance

For a conventional two-dimensional system at zero magnetic field, as long as only the ground

state is occupied, the resistance continuously decreases with increasing electron density. In

the SLFET, however, we observe an increasing zero-field resistance above a critical electron

density, as shown in Figure 2.25 for two different temperatures. The observed minimum

resistance is at Ug = 0:54 V and shows a shoulder at Ug = 0:5 V, which disappears at higher

temperatures. The resistance increase above the critical electron density is much pronounced

for non-zero magnetic fields. This is yet another sign of the peculiar density of states in the

SLFET. In a simple relaxation time approximation model, the conductivity at zero tempera-

ture is given by [Ash76]

σ = e2τ(EF)
Z

d~k
2π2 M�1(~k); (2.54)

where M is the effective mass tensor. The integration is to be taken over all occupied states.

Clearly, for Fermi energies within the band, the~k-integration results in a proportionality to

ns, which for the free electron case results in the Drude relation σ = nse2τ=m�. For Fermi

energies in the band gap, however, due to the periodicity of the electron effective mass in
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Figure 2.25: Electron density dependence of the zero magnetic field resistance. The solid

gray line is calculated.

x direction, the only non-vanishing part in the integral (2.54) has a k space area proportional

to the square root of the Fermi energy, just as the density of states for large EF. This explains

the observed increase of the zero-field resistance for large gate voltages. In this model, the

shoulder observed at Ug = 0:5 V only for the low-temperature trace remains unexplained.

We can directly calculate the zero-field resistance in the following model [Gra01], which

assumes only inelastic scattering, see Figure 2.26. Using the energy spectrum (2.8) and the

equation of motion (2.15), the x component of the Fermi velocity is given by

v(x)F (kx) =
∆d
2h̄

sin(kxd): (2.55)

The conductivity in x direction is obtained by summing the number of parallel modes of

conduction ∆ky=2π over the Fermi line between kmin
y and kmax

y , taking into account the spin

degeneracy gs = 2

σ(EF) = 2gs
e2

h
1

2π

Z kmax
y

kmin
y

lx(ky;EF)dky (2.56)

R. A. Deutschmann Two dimensional electron systems in atomically precise periodic potentials (2001)
Ph.D. Dissertation. Selected Topics of Semiconductor Physics and Technology, ISBN 3-932749-42-1



52 CHAPTER 2. MAGNETOTRANSPORT IN THE LOWEST MINIBAND

Figure 2.26: Model for explaining the zero-field resistance.

weighted with the scattering length

lx(ky;EF) = v(x)F (kx(ky;EF))τ(EF): (2.57)

The momentum kx is expressed in terms of the momentum ky and the Fermi energy EF by

inverting the energy spectrum (2.8). For the inelastic scattering time we empirically assume

an electron density dependence due to screening

τ(ns) = τ0

�
ns

n∆
s

�c

; (2.58)

where

n∆
s = ns(E = ∆); (2.59)

is the electron density for a filled miniband, and the relation between the electron density

and the Fermi energy is known from Section 2.2.4. The gray line in Figure 2.25 has been

calculated in this model with R = L=(W σ), using the parameters ∆ = 3:8 meV, d = 15 nm,

W = 250 µm, L = 1:5 µm, τ0 = 0:5 ps and c = 0:7. The agreement between experiment

and theory is excellent, except for a linear offset on the gate voltage axis, which we have

accounted for by a linear shift of ∆Ug = 0:27 V.
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Figure 2.27: High-frequency magnetoresistance oscillations at commensurate superlattice

period and magnetic length.

2.3.10 High frequency magnetoresistance oscillations

We want to point out a peculiar resistance oscillation effect observed around filling factor

ν = 3, for which we do not have an explanation. As shown in Figure 2.27 between B = 2:7 T

and B = 3:3 T the magnetoresistance exhibits short period oscillations with a mean period of

∆B = 57 mT, although the periodicity is not quite regular. Raising the temperature from T =

0:35 K to T = 1:55 K almost entirely quenches this effect, pointing to a quantum interference

effect as the origin. Signatures of this effect can be found in the (Ug;B) measurement shown

in Figure 2.18 in the region (0.35 V: : :0.55 V; 2.5 T: : :4 T) as straight lines, which show

a different dependence on magnetic field and electron density than filling factor ν = 3 also

crossing this area. We note that the magnetic length lB = (h̄=eB)1=2 in this magnetic field

region matches the period length of the superlattice d = 15 nm.
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2.4 Quantum mechanical model

Using only semiclassical arguments and the zero-field band structure, we have been able to

understand the magnetoresistance data fairly well. Here we are interested in a full quan-

tum mechanical treatment of the problem, where neither the magnetic field nor the potential

modulation are treated as a weak perturbation. The results of this calculation yield a better in-

sight into the physics of a strongly modulated electron system in a magnetic field of arbitrary

strength. It is found that the Landau levels exhibit an internal band structure. The density of

states is calculated explicitly, and allows to understand the hitherto unexplained switching of

the magnetoresistance maxima to minima at integer filling factors. The results presented in

this section have been obtained in collaboration with K. Vyborny and L. Smrcka, Institute of

Physics, Academy of Sciences, Prague, Czech Republic.

2.4.1 Formulation of the problem

The Schrödinger equation reads, in the coordinate system introduced in Figure 2.1, and using

the vector potential in the gauge ~A = (0;Bx;0)�
1

2m�
(~p� e~A)2 +V (x)

�
Ψ(x;y) = (2.60)�

1
2m�

p2
x +

1
2m�

(�ih̄
d
dy

+ eBx)2 +V (x)

�
Ψ(x;y) = εΨ(x;y);

where V (x) is the periodic potential. We exploit the translational invariance in the y direction

and make the separation ansatz Ψ(x;y) = exp(ikyy)ψ(x) to obtain with�
1

2m�
p2

x +
1

2m�
(h̄ky + eBx)2 +V (x)

�
ψ(x) = E(ky)ψ(x) (2.61)

a one-dimensional Schrödinger equation for an electron confined in a parabolic potential

with a superimposed periodic modulation. Note that the parabolic potential depends on the

momentum in the free electron direction, and increases in strength with increasing magnetic

field. The corresponding Hamiltonian Hx is periodic in x direction with period d due to the

periodicity of V (x). We solve Equation (2.61) in the tight-binding approximation, assuming

that a state jϕ(x� jd)i is nested in each well, where jd denotes the well center coordinate

and j is an integer. In the tight-binding model only neighboring states overlap

hϕ(x� jd)jHxjϕ(x� kd)i= tδ jk�1 (2.62)
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with the requirement

hϕ(x� jd)jϕ(x� kd)i= δ jk (2.63)

that the states jϕ(x� jd)i form an orthonormal basis.

Condition hϕ(x� jd)jHxjϕ(x� jd)i= 0 defines the zero energy level. In this basis the

solutions to Equation (2.61) can be expressed as the linear combination

ψ(x) =
N

∑
j=�N

a jϕ(x� jd); (2.64)

and the numerically tractable finite set of equations read

N

∑
j=�N

Hjl(ky)a j = E(ky)al (2.65)

where the matrix Hjl assumes the tridiagonal from

Hj j =
h̄2

2m�
(ky + jκ)2; Hj j�1 = t; (2.66)

with κ = edB=h̄. For large N the finite system described in Equation (2.65) is solved by func-

tions periodic in ky with period κ. Perpendicular to the zero-field periodicity in x direction

with a Brillouin zone k0 =�π=d a new repeated zone scheme is therefore introduced by the

magnetic field with zone boundaries at ky =�κ=2 that increase with magnetic field strength.

Equation (2.65) is formally similar to the nearly free electron result�
h̄2

2m�
(ky + jκ)2�E

�
a j +

∞

∑
l=�∞

Vl� jal = 0; (2.67)

with

Vn = κ
Z d

0
e�inκyV (y)dy: (2.68)

This exact equation refers to electrons which are almost free in y direction, and Vn are the

Fourier components of the weak perturbing potential V in the y direction. Comparing the

Fourier series with Equation (2.65) we realize that Vl� j = tδl j�1, i.e. V�1 = t and V�n = 0

for n = 0;2;3; : : :. Therefore V (y) = t[exp(iκy)+ exp(�iκy)] = 2t cos(κy), and for N ! ∞
Equation (2.65) is equivalent to�

� h̄2

2m�

d2

dy2 +2jtjcosκy

�
χ(y) = Eχ(y): (2.69)

being solved with the ansatz χ(y) = exp(ikyy)u(y). This is the well known Mathieu prob-

lem [Abr65].
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2.4.2 Qualitative discussion of the energy spectrum

Using Equation (2.69) we obtain a qualitative idea of the ky dependence of the energy eigen-

values for the limit of small and large energies with respect to the potential 2jtjcosκy. Since

the potential in this equation is periodic, we focus on one period y 2 (�π=κ;π=κ).
For �2jtj< E < 2jtj the eigenstates should be similar to those of a particle confined in

a potential well. In particular when E � 2jtj, the wave function is localized at jyj � π=κ,

energies supplied by Equation (2.69) are independent of ky (flat bands), and the potential can

be expanded around its minimum

2jtjcos(κy) =�2jtj+ jtj(deB)2

h̄2 y2 +O(y4): (2.70)

In this limit the problem corresponds to a harmonic oscillator with potential 1
2myω2

cy2 with a

frequency

ωc =
eBp
mxmy

; (2.71)

that corresponds to the cyclotron frequency at the miniband minimum. The energy spectrum

is

E =�2jtj+ h̄ωc(ν+
1
2
); ν = 0;1; : : : (2.72)

In the limit of large energies, weak coupling t ! 0, or strong fields, E � 2jtj, the electron

behaves like an almost free one-dimensional particle, only weakly perturbed by the cosine

potential. Therefore the spectrum is parabolic with narrow gaps at ky =�κ=2. Essentially the

system separates into decoupled one-dimensional wires with parabolic spectrum and density

of states D(E) ∝ 1=
p

E.

2.4.3 Energy bands and density of states

We calculate the energy spectrum by numerically diagonalizing the finite linear system in

Equation (2.65). The density of states is then calculated from the E(ky) relation by

D(E) =
1

2π

Z
E 0=E

���� dky

dE 0

���� : (2.73)

We show three examples for different magnetic field strengths for energies between E =

0 and E = 2∆. We have shifted the energy axis for the Figures up by 2jtj to define the

energy minimum to E = 0, and we use ∆ = 4jtj. In order to draw a relation to the transport
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Figure 2.28: Calculated band structure (a), density of states and electron density (b) for

B = 0:5 T

experiment we assume that extrema in the density of states correspond to extrema of the

conductivity.

In Figure 2.28 the low-field case is shown for B = 0:5 T. As discussed qualitatively in the

last section, for low energies the bands are flat, almost equidistant as expected from regular

Landau levels, and the density of states consists of delta functions. The system behaves like

a two-dimensional electron gas, in a semiclassical picture electrons perform closed orbits.

At the band edge the system undergoes a sharp transition. The Landau levels exhibit an

internal dispersion, and for larger energies bands are parabolic with vanishing gaps, while

the density of states decreases like one over square root of energy. Semiclassically this

situation corresponds to open electron orbits, no quantum oscillations are expected due to

the continuity of the density of states.

The intermediate regime h̄ωc � ∆ is shown in Figure 2.29 for B = 1:75 T. Only two

Landau levels are located below E =∆, both show some dispersion, and higher Landau levels
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Figure 2.29: Calculated band structure (a), density of states and electron density (b) for

B = 1:75 T

are strongly modulated. Most importantly, even for E > ∆ the density of states exhibits an

internal structure with maxima at the flat band energies, and clear gaps are visible, which

will leave signature in the magnetoresistance. This corresponds to the magnetic breakdown.

Electrons perform closed orbits even for energies in the band gap.

The high field case is displayed in Figure 2.30, calculated for B = 10 T. Here, only one

single highly dispersive Landau level is visible below E = 2∆, and no magnetoresistance

oscillations are expected. The density of states is continuous, and in the energy range shown

no breakdown occurs. We note that the increasing breakdown field with increasing Fermi en-

ergy has already been discussed semiclassically in Section 2.2.8. Since we have not included

the spin degree of freedom in the quantum mechanical calculation, the observed spin-split

Landau level (see Section 2.3.8) cannot be explained in this model.

The quantum mechanical calculation yields results similar to the semiclassical model for

both high (E > ∆) and low (E � 0) energies. In the latter case narrow peaks in the DOS
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Figure 2.30: Calculated band structure (a), density of states and electron density (b) for

B = 10 T.

can be interpreted as closed orbits on the Fermi surface. The almost parabolic bands present

for large energies correspond, up to the narrow gaps, to open orbits. However, according

to the semiclassical model, the transition between these two regimes should be sharp. The

difference between semiclassical and quantum mechanical model is the presence, first, of

gaps in the parabolical part and, second, of wide bands in the transition region E � ∆.

2.4.4 Density of states in the (Ug; B) plane

In Figure 2.31 we show the calculated density of states in the parameter space (Ug;B) and

compare it to the measurement. The electron density is obtained by integrating the density

of states, and the relation between electron density and gate voltage is linear, and known

from the experiment. A high density of states is shown in dark, while zero density of states

is displayed in white. For gate voltages Ug < 0:45 V sharp Landau levels are recognized,

that broaden for larger gate voltages. As can be seen, the sharp Landau levels correspond
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to magnetoresistance maxima in the experiment, while magnetoresistance minima for larger

gate voltages appear at the density of state gaps, and large resistance maxima correspond

to the local density of states minima between the gaps. Given this density of states, it is

straightforward to calculate the conductivity tensor for arbitrary magnetic field strengths

using the Kubo formula. This calculation is beyond the scope of this work.

2.5 Conclusion

In this chapter we have presented an electronic system that took us on a tour starting from a

two-dimensional world and ending in a one-dimensional micro-cosmos, the location dictated

by the magnetic field. The experimental method used to probe the system was magnetotrans-

port, and we gained understanding of the system by semiclassical considerations, and by a

full quantum mechanical calculation.

In the two-dimensional world, electrons perform closed orbits, magnetoresistance oscil-

lations periodic in inverse magnetic field are measured, and the electron states are condensed

on sharp Landau levels. In the one-dimensional regime we observe a strong increase of

the magnetoresistance at low fields, explained by the presence of open orbits, or by Lan-

dau levels with an internal band structure. For larger fields magnetoresistance oscillations

are recovered, explained semiclassically by magnetic breakdown, i.e. electron tunneling in

k space between open orbits, or quantum-mechanically by the presence of gaps in the density

of states even for energies in the gap.

We supply a full experimental mapping of the phase diagram, presented in Figure 2.11,

comprising these regimes. This is a unique demonstration of a transition from a two-

dimensional electron system to a one-dimensional behavior in a single sample, and may

be the first proof of the magnetic breakdown relation (2.28) between Fermi energy, energy

gap and magnetic field.
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Figure 2.31: (a) Calculated density of states, gray scale coded (white=zero). (b) Experimen-

tal magnetoresistance maxima (red) and minima (blue).R. A. Deutschmann Two dimensional electron systems in atomically precise periodic potentials (2001)
Ph.D. Dissertation. Selected Topics of Semiconductor Physics and Technology, ISBN 3-932749-42-1
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Chapter 3

High Field Miniband Transport

The fundamental effect of the existence of a miniband on charged carrier

conduction is related to an upper limit of the energy, which can be acquired

from the electric field applied along the superlattice growth axis. As opposed

to other scattering mechanisms commonly known in bulk semiconductors, this

limit strongly influences the high field transport for moderate miniband widths ∆.

In this chapter we experimentally and theoretically study the non-

equilibrium transport of electrons through SLFET devices with different mini-

band widths. After a review of miniband transport, we present self-consistent

calculations of the miniband structures of the SLFETs. Current-voltage traces

are then discussed in the framework of the Esaki-Tsu miniband conduction. The

possibility of the observation of Bloch-phonon resonances is discussed, as well

as advantages of SLFETs with respect to bulk superlattices in regard of charge

instabilities.

Further insight to miniband conduction is gained by transport studies in

crossed electric and magnetic fields. We conclude this chapter with a variant

of the SLFET in the form of two different ultra-short channel transistors and

proof their practicability by experimental results.
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3.1 Superlattice transport: Review

Superlattice systems have been a very active research area in solid state physics. A sim-

ple search for the term ’superlattice’ in the INSPEC database yields 15000 hits, over 9000

of these published papers relate to semiconductor superlattices. A review of the field is

therefore bound to be incomplete. Here we concentrate on seminal papers investigating

high-field superlattice transport, briefly discuss the history of Bloch oscillations, and then

focus on device structures similar to the SLFET, i.e. modulated two-dimensional electron

systems. An excellent recent overview of transport and optical experiments in bulk superlat-

tices, written by several leading authors in the fields, has been collected in a textbook style by

H. Grahn [Gra95]. Some results of this chapter have previously been published in [Deu00c]

and [Deu01b].

3.1.1 Esaki-Tsu model

In their seminal paper [Esa70], Leo Esaki and Raphael Tsu not only introduced the concept

of the superlattice, but they also indicated that the fabrication of the Bloch oscillator device

should become feasible by making use of the obtained reduced band width. The essential

features of the so called Esaki-Tsu model have been proven correct since their proposal.

The semiclassical equation of electron motion in a one-dimensional solid under the ap-

plication of an electric field F are

h̄
dk
dt

= eF and v =
1
h̄

∂E
∂k

: (3.1)

Even though, by means of the first equation, the momentum k is increasing linearly in time

k(t) =
eFt
h̄

; assuming k(0) = 0; (3.2)

in a periodic potential, for example a sinusoidal miniband structure in a superlattice with

period d, the group velocity v(t) is not increasing without bounds, but oscillating in time

E(k) =
∆
2
(1� cos(kd)) ) v(t) =

∆d
2h̄

sin(ωBt): (3.3)

The relevant frequency, the Bloch frequency ωB,

ωB =
eFd

h̄
(3.4)
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Figure 3.1: Electron velocity (b) and electron effective mass (c) in the Esaki-Tsu model,

when a sinusoidal energy dispersion is assumed (a). The Brillouin zone boundary is at k0 =

π=d, where d is the superlattice period.

is nothing but the potential energy the electron gains when travelling one period of the su-

perlattice in the electric field F . The relation between E(k), v(k) and m(k) = h̄(∂v(k)=∂k)�1

is shown in Figure 3.1.

Scattering is introduced to the model by a mean time between collisions τ through an

assumed exponential temporal decay of the probability of collisionless (ballistic) transport
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at time t. The net velocity computed as an average over the whole electron gas then reads

vm =
Z ∞

0
exp(�t=τ)dv =

eF

h̄2

Z ∞

0

∂2E
∂k2 exp(�t=τ)dt: (3.5)

Integration, using the sinusoidal dispersion, yields the important result

vm =
µF

1+(F=Fc)2 ; (3.6)

where

µ =
eτ
m�

(3.7)

is the low field mobility,

m� = m(k = 0) =
2h̄2

∆d2 (3.8)

denotes the electron effective mass at the bottom of the miniband, and

Fc =
h̄

eτd
(3.9)

is the critical electric field, above which in this model the mean electron velocity vm is pre-

dicted to decrease. This negative differential velocity is indeed a true miniband effect, since

the peak velocity vp

vp = vm(F = Fc) =
∆d
2h̄

(3.10)

is a value directly proportional to the miniband width. In natural solids band widths usually

are on the order of eV, resulting in theoretical peak velocities much too high to be sensible,

and other saturation mechanisms, such as phonon emission or intervalley scattering would

prevail over miniband negative differential velocity.

3.1.2 Bloch oscillations

Bloch oscillations (BOs) in the semiclassical model of Esaki and Tsu refer to the oscillatory

electron motion in a biased periodic potential. The amplitude of this motion is obtained by

integration of Equation (3.1) to λ = ∆=eF . For low electric fields electrons are scattered

before they are significantly accelerated, and a Drude drift current with low field mobility

µ results. For sufficiently large electric fields, however, electrons reach the Brillouin zone

boundary and are Bragg reflected. The current is therefore expected to decrease, as electrons

are localized in space, until they are scattered.
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Figure 3.2: (a) Localization of the electron wave packet over a length λ, the Bloch energy

EB is identical to the voltage drop over one period of the superlattice. (b) velocity to electric

field relation as predicted by the Esaki-Tsu model.

In fact, within the Esaki-Tsu model, the negative differential velocity is found to occur

even earlier than that. The mean electron momentum is given by

km =
1
τ

Z ∞

0
exp(�t=τ)k(t)dt =

eFτ
h̄

; (3.11)

and therefore at the peak electric field km = 1=d. The average electron momentum acquired

from the electric field at the onset of negative differential velocity is below k0 = π=d, at which

momentum the electrons are Bragg reflected at the Brillouin zone boundary. The origin of

negative differential velocity can be understood as originating from the negative effective

mass of the electrons above k = k0=2.

In Figure 3.2(a) we schematically show the conduction band of a biased superlattice,

which hosts an electron wave packet of lateral extent λ, and with Bloch energy EB = h̄ωB.

In Figure 3.2(b) the calculated drift velocity vm in the Esaki-Tsu model is plotted.

The literature on Bloch oscillations is extensive. Here we can merely recall the history

of Bloch oscillations in short terms. Some good review articles that cover the history and

physics of Bloch oscillations include the topical review by K. Leo [Leo98], the article by

Lyssenko [Lys98], and the short review by Dekorsy (in German) [Dek96].
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Year Author Milestone Reference

1928 F. Bloch description of the crystal electron dynamics [Blo28]

1934 C. Zener prediction of Bloch oscillations [Zen34]

1970 L. Esaki and R. Tsu proposal of the superlattice [Esa70]

1988 E.E. Mendez et al. observation of the Wannier Stark ladder [Men88]

1992 J. Feldmann et al. observation of BOs by four-wave mixing [Fel92]

1992 K. Leo et al. ” ” [Leo92]

1993 C. Waschke et al. observation of THz emission [Was93]

1996 K. Unterrainer et al. Inverse Bloch oscillator [Unt96]

1996 M. B. Dahan et al. BOs in ultra-cold cesium atoms [Dah96]

1997 V. G. Lyssenko et al. observation of BO real space motion [Lys97]

Bloch oscillations have been proven to exist using optical excitation. The Bloch oscilla-

tor device itself, which would emit tunable high-frequency radiation upon application of a

DC voltage, has not yet been proven to exist to date. The reason relates to the fact, that bulk

superlattices need to be doped in order to perform transport experiments, as opposed to opti-

cal excitation. The first consequence of doping is a great reduction of the electron scattering

time τ, shifting the critical electric field up into regions, where miniband transport breaks

down. Secondly, doped bulk superlattices are inherently instable against breakdown into

high-field and low-field domains. These domains can either be localized in space [Gra91],

or travelling [Sch98b], in both cases the Bloch oscillation is quenched. Travelling domains

may, however, also be used as high-frequency emitters [Kas97]

3.1.3 Beyond the Esaki-Tsu model

Since the formulation of the Esaki-Tsu model, a great deal of theoretical work has been

dedicated to refine it, with the goal in mind to obtain a combined theoretical description for

all energy scales involved, namely the zero-field miniband width ∆, the scattering rate Γ=h̄,

and the potential drop per period EB = eFd. Three distinct approaches have been used to

describe transport in the parameter space spanned by (∆;EB;Γ), summarized in Figure 3.3:

(A) Miniband conduction [Esa70][Leb70]

For zero electric field the appropriate basis functions are Bloch functions, and the current

is numerically calculated using the stationary Boltzmann equation in the relaxation-time

approximation. In this approximation the field induced localization is neglected because of
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Figure 3.3: Different regimes of superlattice transport (after [Wac98b]). Miniband transport

holds for eFd � ∆=2 and Γ � ∆=2; Wannier-Stark hopping holds for Γ � eFd; sequential

tunneling holds for ∆=2� eFd or ∆=2� Γ.

its inherent assumption of extended states. The Esaki-Tsu model presented above is a good

approximation to the results at T = 0 K.

(B) Wannier-Stark hopping [Tsu75]

In the presence of an electric field, the system is best described by localized Wannier states.

Scattering causes hopping between the different states, and the current is calculated using

Fermi’s golden rule. No broadening of the states is assumed.

(C) Sequential tunneling [Tsu73][Esa74][Cho87]

In this approximation the phase information is lost after each tunneling event between adja-

cent wells, scattering within a well is treated self-consistently, and transition to neighboring

wells is explicitly calculated only to lowest order.

A full quantum transport theory, based on non-equilibrium Green functions, is able to

treat scattering, electric field, and coupling on an equal footing, and allows an analysis of

transitions between the three simplified approaches above [Wac98b][Wac00][Rot99b].
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3.1.4 Experimental work

Ever since the proposal by Esaki and Tsu in 1970, the experimental study of transport through

superlattices in the miniband regime has proven a difficult task. As mentioned above, for

electrical transport the superlattices need to be doped, reducing the electron scattering time,

and most importantly, leading to an instability of the electric field in the superlattice in the

regime of negative differential velocity. Sibille et al. [Sib90] have performed the most

extensive study in biased, doped superlattices and observed negative differential velocity

only indirectly by a sub-linear current-voltage relation, and fitting by an appropriate model.

Transport through undoped superlattices has been studied in a vertical three terminal device

by hot electron injection into a superlattice [Rau97].

While Esaki and Tsu [Esa70] have only considered a one-dimensional superlattice, and a

Fermi energy at the bottom of the miniband, soon after their paper Lebwohl and Tsu [Leb70]

have extended this work to include the two free electron directions of the superlattice, and

higher Fermi energies. They show that, contrary to the one-dimensional lattice, in the three-

dimensional case the current persists even when the Fermi energy is the the minigap. A

modulated two-dimensional system, like the SLFET, has first been considered theoretically

in 1976 by Sakaki [Sak76]. He predicts the same field dependence of the velocity as the

Esaki-Tsu model, the peak velocity, however, depends on the Fermi energy in such a way

that it drops to 33% when increasing the Fermi energy from zero to EF =∆. Stiles, working as

a Humboldt fellow at the Technische Universität München, was first to theoretically consider

three terminal devices, having of course silicon MOSFETs in mind [Sti78]. He suggested

to fabricate modulated two-dimensional systems using grid-gates or silicon vicinal surfaces.

These devices have subsequently been realized in GaAs MODFETs using one-dimensional

metallic stripes [Ism88] and on a GaAs (001) vicinal plane [Mot89]. Negative differen-

tial resistance, however, could only be demonstrated using a two-dimensional modulation

with square-grid-gate devices [Ber87b] [Ber87a] [Ism88]. The vicinal surface devices, re-

lying on self-organization, hardly achieve regular potential modulations, while the grid-gate

devices, although well defined, are limited to periods above 100 nm and weak potential

modulations due to the distance between the surface-gates and the two-dimensional electron

system. Modulated electron systems fabricated by cleaved-edge overgrowth by Stormer et

al. [Sto91b] have only been characterized in equilibrium magnetotransport, possibly because

they used superlattice contacts which at finite source-drain voltages cause leakage currents

through the bulk superlattice. A similar device fabricated by liquid phase epitaxy exhibited
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a sub-linear current-voltage relation at the first voltage sweep, which was not reproducible

and linear at subsequent sweeps [Kur95].

3.2 Self consistent band structure calculation

The band structure of the q=0 nm SLFET can in good approximation be calculated using

the one-dimensional Kronig-Penney model. This is because the potential modulation in

x direction is known from the growth parameters (aluminum content and layer thicknesses),

and because electronic states in x direction and z direction can be treated as separable. For

the q > 0 nm SLFETs, however, a one-dimensional calculation is insufficient, since here the

material parameters vary in x and in z direction. Additionally, from a two-dimensional calcu-

lation we can expect to learn about the minibands resulting from excited states in z direction.

We calculate the quantum-mechanical states in the SLFETs self-consistently using a

computer program developed by M. Rother [Rot99a][Rot00]. The superlattice, the gate di-

electric and the gate contact are modelled as grown, and the chemical potential difference be-

tween gate and two-dimensional electron gas is defined as gate voltage Ug. In Figure 3.4(a)-

(d) we show the resulting electron density distribution n(x;z) obtained for the four SLFETs

under investigation in this chapter. The density n(x;z) is obtained by summing the absolute

value of the square of all occupied electron states using the Fermi distribution at T = 300 mK.

The electrons are localized at a distance of about 10 nm from the interface to the gate barrier,

and the electron density almost vanishes in the region of the superlattice barriers. To very

good approximation the integrated two-dimensional electron density is described by a cosine

function. The mean electron density in this calculation is ns � 1:1�1011 cm�2.

The calculation shows that by insertion of a (110) GaAs layer between the superlattice

and the gate barrier the modulation strength of the electron gas can be varied from a relatively

weakly coupled one-dimensional wire system to an almost unmodulated two-dimensional

system. For q = 0 nm the electron density ns almost drops to zero in the barrier region,

whereas for q > 0 nm the electron wave function more and more penetrates the barrier re-

gions.

While the electron density ns was calculated based on all occupied electron states, we

now concentrate on single selected electron wave functions, exemplified using the q= 10 nm

and the q = 20 nm SLFETs. In Figure 3.5 we plot the probability distribution of wave

functions belonging to kx = 0. States (a) and (c) correspond to the lowest energy state,

while (b) and (d) have a higher energy, and correspond to excited states in the z direction.
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Figure 3.4: Self-consistently calculated electron density distribution for (110) GaAs layer

thickness q=0 nm (a), 4 nm (b), 10 nm (c) and 20 nm (d). The top part of (a)-(d) shows the

gray-scale coded electron density distribution in the (x;z) plane. The gate barrier is situated

below the line z = 0. The superlattice AlGaAs barriers are hatched. The lower part of (a)-(d)

shows the sheet electron density integrated over z. The circles mark the calculated density,

while the solid lines are cosine function approximations. The mean two-dimensional electron

density is ns = 1:1�1011 cm�2.
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Figure 3.5: Electron wave functions for the kx = 0 state, calculated for the q = 10 nm SLFET

(a),(b) and the q = 20 nm SLFET (c),(d). (a) and (c) represent the ground states of the lowest

miniband, (b) and (d) represent the ground state of the first excited miniband.

Two conclusions can be drawn from this observation. First, we expect minibands to emerge

from both the z ground states and the z excited state, and both bands should have the same

symmetry with respect to kx. Second, the widths of the lower energy miniband is expected to

be larger than the higher miniband width. This is because the effective potential modulation

depends on the z coordinate, and lower energy electron states are located close to the gate

barrier, whereas higher energy electron states are located further inside the superlattice. Thus

the lower energy states feel a weaker modulation strength than the higher energy states. For

the q = 10 nm SLFET therefore the higher miniband is expected to have approximately the

same width as the lower miniband width in the q = 0 nm SLFET, and the higher miniband

width in the q= 20 nm SLFET is expected to be increased owing to the decreased modulation
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amplitude for the associated electron states.

Based on this reasoning we understand the band structures, calculated from the electronic

states for the different SLFETs, and shown in Figure 3.6. For every SLFET the two lowest

minibands are shown. As expected, with increasing (110) GaAs layer thickness q from (a)

to (d), the width of the lowest band increases correspondingly, as the modulation amplitude

decreases. The first excited miniband, however, is only weakly dependent on q, as the cor-

responding electron states are still embedded in the superlattice. The cosine fit to the data

becomes progressively worse as the electron dispersion approaches the almost free GaAs

band structure in (d).

The results of the band structure calculation are summarized in Figure 3.7. As the (110)

GaAs layer thickness q is increased, the band width of the lowest band increases (a), and

the electron density modulation amplitude decreases (b). The band widths are found to be

almost independent of the electron density, the energy gap between the minibands, however,

increases with increasing electron density.

3.3 Experimental results: q=0 nm SLFET

All experimental results in this chapter are obtained at T = 0:8 K by applying a voltage to one

of the top contacts and draining the source-drain current Isd to ground via one of the bottom

contacts, while measuring the source-drain voltage across the superlattice Usd using the other

pair of contacts. The plotted source-drain voltage represents the measured source-drain volt-

age minus the voltage drop from the contacts to the two-dimensional electron system using

the sheet resistance of the n+ GaAs contact layers of σ = 25 Ω=�.

All data is analyzed under the assumption of a linear voltage drop across the superlattice

F = Usd=L, where L = 1:5 µm. The source-drain current relates to the carrier velocity as

Isd = nsevmW , where ns is the carrier density and W=250 µm is the sample width. The

relation between gate voltage Ug and carrier density ns is known from the magnetoresistance

measurement in Chapter 2. We recall that the top of the lowest miniband in the SLFET

with no (110) GaAs layer was reached at an electron density of about ns = 2:2�1011 cm�2,

corresponding to a gate voltage of Ug = 0:42 V.
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Figure 3.6: Calculated miniband structure for all four SLFETs with different (110) GaAs

layer thickness q. The squares are calculated, solid lines are cosine fits to the calculated

points, and the dashed lines indicate the free electron dispersion, using the free electron

mass in GaAs. (a) q=0 nm (b) q=4 nm (c) q=10 nm (d) q=20 nm. The zone-folded minibands

associated with the (110) ground state have a minimum energy at kx =�k0 beyond the energy

scale of these figures.
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Figure 3.7: (a) Calculated miniband width and (b) electron density variation for different

(110) GaAs layer thicknesses q.

3.3.1 Current-voltage relation: Overview

In Figure 3.8 the source-drain current Isd is shown in dependence of the source-drain voltage

Usd , for gate voltages between Ug = 0:1 V and Ug = 0:9 V. At first sight several features

can be seen. At small Usd the current exhibits ohmic behavior, with a saturation at larger

voltages. The saturation current increases roughly proportional to the gate voltage. These are

features expected from a conventional MODFET [Pea90]. In the SLFET, however, at small

Usd additionally a region of negative differential resistance appears, followed by oscillations

in Isd . The peak to valley ratio increases with increasing gate voltage, and for large Ug the

current undergoes a sudden drop. Below Ug = 0:1 V the SLFET is completely isolating,

apart from a pronounced current maximum and negative differential resistance at source-
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Figure 3.8: Current-voltage relation of the q = 0 nm SLFET.

drain voltage Usd = 1:03 V, which seems independent of gate voltage.

In the next sections we will discuss the features appearing at small source-drain voltages

in relation to the Esaki-Tsu model. The oscillatory features observed at large gate voltages

may be due to hot electrons being accelerated from the first to the second miniband. The

pronounced peak at Usd = 1:03 V is due to a leakage current through the bulk superlattice

away from the electron channel. At high source-drain voltages electrons are directly injected

into the undoped superlattice, and are accelerated by the electric field. The sudden drop of

the source-drain current in the negative differential resistance region at gate voltages above

Ug = 0:42 V has a slope of R = 850 Ω identical to the resistance of the external leads. This

artefact therefore is determined by the load line of the external circuitry and is not intrinsic

to the SLFET.

In Figure 3.9(a) we take a closer look to the low-field regime of the current-voltage
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Figure 3.9: Current-voltage relation for small source-drain voltages. (a) Ug = 0:1 V .. 0.28 V.

(b) Ug = 0:22 V .. 0.44 V.

relation. Beginning with Ug = 100 mV a finite source-drain current is observed. From

Ug = 170 mV, the current-voltage behavior is ohmic at zero Usd , coinciding with a nega-

tive differential resistance, the peak-voltage of which shifts to Usd = 25 mV for larger gate

voltages. For Ug < 0:4 V the negative differential resistance peak is preceded by a kink. In

Figure 3.9(b) the peak position remains constant at Usd = 25 mV, corresponding to a peak

electric field of only Fp = 166 V/cm, the lowest peak electric field reported in the literature

on superlattices. For Ug > 0:4 V the peak position shifts to larger source-drain voltages, and,

as mentioned above, exhibits a sudden drop, corresponding to the resistance R = 850 Ω of

the external leads.
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Figure 3.10: Esaki-Tsu fit to the source-drain current.

3.3.2 Comparison to the Esaki-Tsu model

In order to fit the current-voltage data, we use a phenomenological generalization of the

Esaki-Tsu formula (3.6) often used in the literature [Sib89]

vm =
µF

1+(F=Fc)η : (3.12)

For η = 2 naturally the original Esaki-Tsu form is retrieved, for larger η the velocity-field re-

lation exhibits a steeper negative differential resistance slope, and for η = 1 the velocity-field

relation is just saturating. We further want to make a distinction between the scattering time

τ related to the low-field mobility µ = eτ=m� and the scattering time τet which determines

the peak of the velocity-field relation

Fc =
h̄

edτet
; (3.13)

note that this relation does not depend on the electron effective mass m�.

In Figure 3.10 we plot the measured source-drain current together with the fit (3.12). We

find that the best fit to the data is obtained with η = 4. Using this exponent, the scattering
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Figure 3.11: Peak electric field and electron scattering time

time τet is given by the peak electric field Fp through

τet =
h̄

edFp
4
p

3
: (3.14)

For a peak electric field of Fp = Up=L = 28:5 mV=1:5µm=190 V/cm in this experiment we

thus find τet = 1:8 ps.

We want to point out an interesting coincidence of the scattering time τet determined in

the Esaki-Tsu model, and the quantum scattering time τq as determined from the onset of

the magnetoresistance oscillations at the field Bc through τq = mc=eBc, see Chapter 2. There

we have found the cyclotron effective mass mc = 0:12m0 and Bc = 0:3 T. The resulting

quantum scattering time is τq = 2:3 ps. This similarity of both scattering times indicate,

that the relevant scattering events for the Bloch-oscillating electrons are the ones that are

phase-breaking.

In Figure 3.11 we plot the density dependence of the electron scattering time τet as eval-

uated from peak position of the source-drain current. For gate voltages between Ug = 0:25 V

and Ug = 0:35 V the peak electric field is only Fp = 166 V/cm, and the electron scattering
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Figure 3.12: (a) Phonon dispersion relation, the minigaps are schematically drawn,

(b) Bloch-phonon resonances observed in the source-drain current.

time exhibits a maximum at 2 ps. For larger gate voltages, when the Fermi energy enters the

minigap, the electron scattering time decreases.

3.3.3 Bloch - phonon resonances

In this section we want to introduce a scattering mechanism that explains the increasing

source-drain current beyond the negative differential resistance region, as clearly seen in

Figure 3.9. In the Esaki-Tsu picture, one expects that the electrons localize more and more,

once the peak electric field is reached. This localization would result in an ever decreasing

macroscopic current. In the case of the SLFET, however, it seems that starting with an elec-

tric field of about F =Usd=L = 50 mV=1:5 µm some scattering mechanisms takes effect, that
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lifts the electron localization so that the source-drain current increases again for increasing

source-drain voltage.

Our model consists of two ingredients. First, we ask about low energy electron scat-

tering mechanisms. Conduction electron scattering may occur by acoustic waves through

the deformation potential [Bar50]. Additionally, if a semiconductor crystal consists of dis-

similar atoms such as in GaAs, where the bonds are partly ionic, and the unit cell does not

contain a center of symmetry, as in the zincblende lattice, carriers may be scattered by lon-

gitudinal acoustic waves due to piezoelectric scattering [See88]. Second, we realize that the

superlattice not only affects the electronic structure through the periodicity of the potential

energy, but also the phonon energy spectrum by means of the different elastic constants of

GaAs and AlGaAs. Therefore the linear acoustic phonon spectrum is folded back at Bril-

louin zone boundary k0 = π=d, as shown in Figure 3.12(a). Using the TA and LA sound

velocities for GaAs vTA
GaAs = 3:34� 105 cm/s, vLA

GaAs = 4:73� 105 cm/s and Al0:32Ga0:68As

vTA
AlGaAs = 3:51� 105 cm/s, vLA

AlGaAs = 4:98� 105 cm/s [Ins93], we calculate the low-energy

dispersion relation for the TA and LA phonons using the mean sound velocity in the GaAs

well and AlGaAs barrier of the superlattice

vTA =
lwvTA

GaAs + lbvTA
AlGaAs

lw + lb
= 3:38�105 cm/s (3.15)

vLA =
lwvLA

GaAs + lbvLA
AlGaAs

lw + lb
= 4:78�105 cm/s:

The phonon energies at k = 0 are E0
TA = h̄vTA2π=d = 0:93 meV and E0

LA =

h̄vLA2π=d = 1:32 meV. Folded phonons have been observed experimentally by raman spec-

troscopy [Col85], but never in transport experiments.

For electric fields F > Fp the majority of the electrons are performing Bloch oscillations

with Bloch energy EB = edF = edUsd=L. The source-drain voltage axis therefore directly

corresponds to an energy axis. In Figure 3.12(b) the source-drain current exhibits maxima at

energies E0
TA and E0

LA, where also the density of states of the phonon spectra have maxima.

Localization due to Bloch oscillation is lifted, when Bloch oscillating electrons resonantly

emit TA or LA phonons. These electrons contribute to the drift current, and the source-

drain current increases. For low gate voltages when the negative differential resistance is

first observed, the subsequent increase of the source-drain current coincides with the energy

scale of E0
TA and E0

LA.

In Figure 3.13 we present an overview of the maxima (red) and minima (blue) of the

source-drain current in the (Usd;Ug) parameter space. The Isd(Usd;Ug) data was processed
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Figure 3.13: Color-scale coded source-drain current maxima (red) and minima (blue) in the

(Usd;Ug) plane.

to obtain a value V

V =� ∂2Isd=∂U2
sd

j∂Isd=∂Usdj (3.16)

which is large at extremal points if Isd by means of the vanishing first derivative, the sec-

ond derivative then determines the sign of the extremum. The horizontal dashed line at

Usd = 25 mV represents the negative differential resistance peak. Energies E0
TA and E0

LA
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are indicated by the horizontal dashed lines at Usd = 93 mV and Usd = 132 mV for the

Bloch-phonon resonances. The diagonal dashed line indicates the SLFET pinch-off point.

The electron density dependence of the resonances is not explained by our model, neither is

the complicated resonance structure for gate voltages Ug > 0:42 V, indicated by the vertical

dashed line, corresponding to Fermi energies in the minigap. We point out the symmetry in

the resonance structure with respect to this gate voltage, which is strikingly close to the gate

voltage marking a filling of the lowest miniband.

3.4 Experimental results: All SLFETs

In this section we systematically study the influence of the miniband width on the physical

properties of the SLFET. Four SLFETs and three reference CEOFETs with the following

parameters are investigated at T = 0:8 K.

type q (nm) ∆ (meV) L (µm)

SLFET 0 3.3 1.5

SLFET 4 5.2 3

SLFET 10 12.2 3

SLFET 20 21.2 3

CEOFET 4 - 1.5

CEOFET 10 - 1.5

CEOFET 20 - 1.5

In the reference samples the superlattice has been replaced by an AlxGa1�xAs layer with

aluminum content x = 6:7% equal to the mean aluminum content in the superlattice. The

reference samples are therefore vertical field effect transistors, we call them CEOFETs.

3.4.1 Current-voltage relation of SLFETs and CEOFETs

In Figure 3.14(a)-(g) the current-voltage relation of all samples is summarized. As the mini-

band width is increased from (a) to (d), the strength of the negative differential resistance

decreases, the peak current and saturation current increases. We note that even the SLFET

(d) with only very weakly modulated two-dimensional electron system, exhibits negative
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Figure 3.14: Current-voltage relations for (a)-(d) SLFETs and (e)-(g) CEOFETs.
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differential resistance. The q = 0 nm SLFET in (a) is identical to the SLFET presented in

the first section of this chapter. The traces of the reference samples are shown on the right

side of Figure 3.14 from (e) to (g). As can be seen, none of the CEOFETs exhibits negative

differential resistance, and the saturation region is less flat. The saturation current from (e)

to (f) increases, but decreases from (f) to (g). If corresponding SLFETs and CEOFETs are

compared, it appears that the saturation current for the q = 4 nm devices is larger in the

CEOFET, while it is smaller for the q = 10 nm and q = 20 nm CEOFET.

3.4.2 Peak current and transconductance

In Figure 3.15(a) we plot the peak current Ip in dependence of the gate voltage Ug for all

four SLFETs. For the q = 0 nm SLFET the Ip(Ug) relationship is super-linear for Ug <

0:5 V and sub-linear for larger gate voltages. This is not in agreement with calculations

by Sakaki [Sak76], that predict a decreasing peak electron velocity vp when increasing the

electron density ns, and thus a sub-linear increase of the peak current Ip = nsevp. It must

be borne in mind that these calculations were performed in the Esaki-Tsu model using a

constant electron scattering time, and a more rigorous treatment is necessary for quantitative

agreement. For larger miniband widths the peak-current to gate voltage relation is more

and more linear, indicating that the linearly increasing electron density is responsible. From

this representation of the data it can be seen, that the predicted increasing peak-current with

increasing miniband width relation (3.10) is qualitatively reproduced.

In Figure 3.15(b) we plot the transconductance gm

gm =
∂Isd(Usd;Ug)

∂Ug

����
Usd

(3.17)

evaluated for a source-drain voltage Usd = 0:4 V in the saturation regime. A logarithmic

scale is used to make visible the small features for the q = 0 nm and the q = 4 nm SLFETs.

In these devices the transconductance exhibits a small maximum for gate voltages below

Ug = 0:18 V. This corresponds to the electron density region where no negative differential

resistance is observed. For larger gate voltages gm increases non-linearly. The sharp features

above Ug = 0:6 V may be due to electrons being accelerated into the second miniband, as

already mentioned in Section 3.3.1. Both SLFETs q = 10 nm and q = 20 nm exhibit a

constant transconductance for Ug > 0:1 V. The independence of Isd on Usd in these devices

is a sign for velocity saturation of the electrons in the channel.
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Figure 3.15: (a) Peak current and (b) transconductance. The lines are plotted as guide for the

eye.

In Figure 3.16(a) we plot the peak current Ip versus the calculated miniband width for

different electron densities ns. The relation between gate voltage and electron density has

separately been determined by evaluation of magnetoresistance data. As can be seen, the

peak current Ip linearly increases with miniband width ∆ for the SLFETs with q = 0 nm, q =
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Figure 3.16: (a) Peak current versus miniband width for different electron densities. (b)

Differential peak current versus electron density.

4 nm and q = 10 nm. Additionally the increase is stronger for large electron densities. This

confirms the Esaki-Tsu result (3.10) predicting a linear relationship between peak velocity v p

and miniband width ∆. In Figure 3.16(b) we plot the differential peak current ∆Ip = ∂Ip=∂∆,

obtained from the linear fit in (a). ∆Ip is the peak current normalized by the miniband width,

and should increase linearly with electron density because Ip = nsevp. As can be seen, this

linearity is well confirmed by the experimental data.

In this discussion we have disregarded the data obtained from the q = 20 nm SLFET.

As can be seen in Figure 3.16(a) the peak current in this device does not increase with the

miniband width as strong as expected. The reason lies in the SLFET sample geometry, in

which a potential barrier exists between the n+ GaAs contact layers and the two-dimensional

electron gas for thick (110) GaAs layers (q � 20 nm), acting as an additional series resistor.

This effect is also observed in the CEOFET reference sample when comparing the q= 10 nm

and the q = 20 nm devices. In the latter the saturation current is even smaller than in the

former. A more detailed discussion of this matter is given in Section 3.6 on the ultra-short

channel CEOFETs.
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3.4.3 Ruling out other mechanisms for negative differential resistance

In the following we discuss and rule out other possible reasons besides Bloch localization

that could theoretically lead to NDR.

(I) Inter-subband scattering might occur since Up is comparable to the subband sepa-

ration, and for q > 10 nm the subbands even overlap. For q > 0 nm ∆2 is always

smaller than ∆1 and due to the heavier electron mass in the upper band, NDR could

be expected. However, this picture is not applicable to the q = 0 nm case, where both

subbands have the same width and mass, and the mobility in the higher subband will

even be larger due to the larger distance of the electrons from the interface. Therefore

the NDR of this sample cannot be explained by inter-subband scattering. Addition-

ally, the strength of the NDR decreases with increasing q, even though the difference

in effective mass of both subbands increases, which also rules out such an explanation

for the NDR.

(II) Intervalley scattering can be excluded because the energy separation between the Γ
and L minima in GaAs is much larger than the energy even of ballistic electrons at Up.

(III) Real space transfer across the gate barrier can be ruled out because the gate current is

orders of magnitude smaller than the source-drain current.

(IV) Breakdown of the electric field in NDR devices into high field and low field domains

may be a major obstacle for operating bulk SL devices beyond Up. In our SLFETs,

however, no sudden jumps in the current at voltages Usd > Up are observed. Addi-

tionally both sweep directions yield identical traces (no hysteresis), almost identical

traces are also obtained for both current directions and even from different samples.

Sudden jumps observed only at high current levels in the q = 0 nm and q = 4 nm

SLFETs are solely due to the external load resistance. We are therefore certain that no

sudden breakdown of the electric field occurs in our SLFETs. Reasons why the charge

distribution in our devices is stabilized even at the presence of NDR are discussed in

the next Section 3.4.4.

(V) We can rule out NDR due to breakdown of the miniband picture and sequential res-

onant tunneling because even for the narrowest miniband width of ∆1 = 3:3 meV the

localization length λ = ∆L=eUp at the NDR is more than 13 periods of the SL.
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Figure 3.17: Charge instability and charge stabilization at the presence of NDR. (a) In a

gated device charge instabilities are damped with a damping length λ similar to the distance

between the metallic plane and the carrier system. (b) Velocity-field relation exhibiting NDR

between the field F1 and F2. (c) Electric field distribution with high-field domain. (d) Charge

inhomogeneity that will grow over time due to the NDR.

3.4.4 Stabilization of the charge distribution

The physics of instabilities in solid state materials with mobile charge carriers and non-linear

velocity-field relation has been an active field of research, for example for understanding

Gunn oscillations, and, very recently, static and travelling domains in semiconductor super-

lattices [Mou01]. Here we merely want to point out the basic origin of an instability in a car-

rier system exhibiting negative differential resistance, and we qualitatively discuss reasons

why in a low-dimensional superlattice, such as the SLFET, instabilities can be suppressed.

An excellent theoretical text book about the physics of instabilities in solid state electron

devices is [Sha92]. Recent articles about dynamic properties of superlattices can be found
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in the book edited by Schöll, see especially the treatment by A. Wacker [Wac98a]. We point

out that low-dimensional systems, such as the SLFET, have much less been investigated in

this context to date.

We illustrate the consequences of a small charge inhomogeneity, as shown in Fig-

ure 3.17 (d), in a device that exhibits negative differential velocity (b), assuming positively

charged free carriers. If the device is biased such that the electric field outside the instability

is in the ohmic regime (c), the peak electric field, however, is between F1 and F2, then the

charge instability will grow over time. This happens because the higher upstream field in the

center of the domain results in carriers moving more slowly than those at the edges, where

the field is lower. Charge will therefore deplete on the right (leading) edge of the domain,

and accumulate at the left (trailing) edge. This charge will add to what is already there,

increasing the field in the domain. If the device is part of a resistive circuit, the increasing

voltage across the domain will decrease the current in the circuit and lower the field outside

the domain. In the case of a mobile domain, this process will continue until the domain ve-

locity is equal to the velocity of the carriers outside of the domain, or the domain reaches the

end of the device, at which instant a new domain may form, resulting in a periodic current

oscillation [Gun64].

A full fledged analysis of mobile carriers with non-ohmic velocity-field relation may be

obtained based on the continuity equation and Poisson’s equation, or with more detailed

models using the non-equilibrium Green function formalism, as well as semiclassical Boltz-

mann or balance equations supplemented by Monte Carlo simulations. Here we merely

want to point out qualitatively reasons, why by means of a reduced dimensionality of the

problem, the charge distribution in our devices is stabilized even at the presence of NDR,

all related to electrostatic screening. First, as schematically shown in Figure 3.17(a), the

presence of a metallic sheet close by the carrier system electrostatically prevents any major

charge accumulation over length-scales larger than the distance between the gate and the

carrier system. Second, in a two-dimensional electron system a possible charge accumu-

lation is one-dimensional, and its resulting electric field decays inversely proportional with

distance, while in bulk superlattices the field caused by a plane charge is independent of the

distance. Third, the damping length in a system of mobile carriers decreases with increasing

carrier density. As the local carrier density in the SLFETs is higher than in normal undoped

or weakly doped bulk superlattices, possible instabilities will be damped on shorter length

scales. Fourth, charge inhomogeneities are thought to preferentially occur at doping fluctu-

ations. Since the SLFET devices are undoped, this source of charge inhomogeneity is to a
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Figure 3.18: (a) Electron mobility determined from the low-field magnetoresistance. Solid

symbols: SLFET, hollow symbols: reference CEOFET. Hollow circle: regime of open elec-

tron orbits in the q = 0 nm SLFET. (b) Example of the low-field magnetoresistance of the

q = 20 nm SLFET. The black line represents the fit to the low-field resistance, the measure-

ment is shown in gray.

large extent suppressed.

3.4.5 Electron mobility

Rather than determining the electron mobility from the zero-field resistance, which is bound

to contain unknown series resistances Rs, we extract the electron mobility from the low-

field magnetoresistance. We use the result for the measured magnetoresistance derived in

Section 2.3.5, and rewrite Equation (2.48) for the classical regime ωcτ < 1

R =
1+(µB)2

σ0(W=L+µB)
+Rs: (3.18)
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For the SLFET samples the width to length ratio W=L is much larger than 1, and σ0 = nseµ,

therefore the low-field magnetoresistance is given by

R� const+
L
W

µ
nse

B2; (3.19)

from which the mobility µ can be extracted directly using the known sample geometry and

electron density ns. The same procedure has previously been used by Tsui and cowork-

ers [Maj00] for similar samples.

In Figure 3.18(b) we show an example of the low-field resistance for one of the SLFETs,

in this case the q = 20 nm device. The magnetoresistance increases quadratically with in-

creasing magnetic field, as predicted by Equation 3.19. The magnetoresistance oscillations

commence at a field of about B = 100 mT, thus the best fit is taken between B = 0 T and

B = 100 mT in this case. In Figure 3.18(a) the resulting electron mobility is displayed for

all SLFETs, in dependence of the electron density ns. In the low density regime, the mo-

bility is almost proportional to the electron density, indicating that the mobility is limited

by background impurity scattering [And82]. For higher densities, the increase in mobility

starts to saturate, suggesting a contribution from interface-roughness scattering. The de-

pendence of the mobility determined by interface roughness µit on electron density ns is

µit ∝ n�2
s [And82] [Wei91a]. Similar electron mobilities as determined for the q = 20 nm

SLFET have been found in back-gated undoped (001) heterostructures [Hir98]. The strong

increase in mobility for increasing (110) GaAs layer thickness q is consistent with a decreas-

ing electron mass for increasing miniband widths, and a decreasing influence of surface-

roughness scattering. The hollow circles in Figure 3.18(a) are not to be taken as real mobili-

ties. For electron densities ns > 2:3�1011 cm�2 open electron orbits prevail in the q = 0 nm

SLFET, which results in a strong quadratic increase of the low-field magnetoresistance (see

Chapter 2). In this regime our evaluation of the electron mobility is not valid any more.

Reference CEOFETs are shown in hollow symbols. Their mobilities are significantly

smaller than the mobilities obtained for the SLFETs. Since samples with the same (110)

GaAs layer thickness have been overgrown in the same run on the same sample holder,

differences in growth conditions can be excluded as an explanation. A possible reason for

the high mobilities obtained with the SLFETs may be that the growth kinetics is favorable

on a substrate that consists of alternating layers of GaAs and AlGaAs, as is the case with the

SLFET superlattice substrates, and not with the reference sample substrates. Alloy scattering

in the substrate AlGaAs should be comparable between SLFET and reference sample since

the Al content for both is the same. The high mobilities obtained with the SLFET samples
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make them ideal candidates for electron density dependent investigations in the fractional

quantum Hall regime, as will be demonstrated in Chapter 6.

3.5 Transport in magnetic field

Non-equilibrium transport through SLFETs in magnetic fields can principally be studied in

three different magnetic field orientations. In bulk SLs the two orientations parallel to the SL

layers are equivalent, whereas in SLFETs all three magnetic field orientations are different.

In this section we concentrate on crossed electric and magnetic fields, where the magnetic

field is applied in z direction perpendicular to the 2DES. We demonstrate current-voltage

traces in dependence of magnetic field strength, with a focus on the behavior of the negative

differential resistance peak. All data are obtained on the q = 0 nm SLFET, which exhibits

the strongest negative differential resistance peak. In a brief theory section we take on two

different perspectives to interpret the results.

3.5.1 Experiment

In Figure 3.19 we show the evolution of the current-voltage relation in the q = 0 nm SLFET

when the perpendicular magnetic field is increased from zero to B = 14 T. The negative dif-

ferential resistance peak rapidly disappears, the low-field ohmic resistance increases, and the

saturation current increases, until the saturation is quenched due to the high ohmic resistance.

As can be seen in the enlargement in Figure 3.19(b), the negative differential resistance peak

does not exhibit a pronounced shift, but merely quenches at about B = 1 T.

At gate voltage above about Ug = 0:3 V a very different behavior is observed. In Fig-

ure 3.20 we show data obtained for Ug = 0:4 V. The negative differential resistance peak

does not quench with increasing magnetic field, it rather shifts to larger source-drain volt-

ages. Peak positions are marked by downward pointing triangles. Additionally, the peak

current first decreases, has a minimum at about B = 1 T, and subsequently increases. As be-

fore, the saturation current increases with increasing magnetic field, and the low-field ohmic

resistance increases.

We summarize the peak voltages and peak currents obtained for gate voltages between

Ug = 0:3 V and Ug = 0:5 V in Figure 3.21. In Figure 3.21(a) the peak voltage positions Up

versus magnetic field B are fitted by the quadratic function

Up(B) =U0
p + cpB2; (3.20)
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Figure 3.19: (a) Current-voltage relation for the q = 0 nm SLFET at a gate voltage of Ug =

0:25 V, obtained in perpendicular magnetic fields between 0 and 14 T. (b) The negative

differential resistance peak is quenched when increasing the magnetic field from zero to

above 1 T.

where U0
p is the peak voltage at zero magnetic field, and cp is the fit parameter. As can be

seen, the data is well approximated by this quadratic dependence on the magnetic field, no

linear term is required. In the inset the value of the fit parameter cp is plotted vs. gate voltage.

At a gate voltage of Ug = 0:35 V, for example, cp = 0:031 V/T2. In Figure 3.21(b) the peak

current Ip is plotted against magnetic field for different gate voltages. The peak current at

zero magnetic field I0
p has been subtracted to plot the data on the same axis. The peak current

exhibits a minimum at magnetic fields of about B = 1 T. The increase of Ip corresponds to

the increase in the saturation current observed in the current-voltage data.

3.5.2 Theory: Miniband transport

In this section we derive the magnetic-field dependent current-voltage relation in a simple,

semiclassical miniband picture. When an electric field F k x̂ and a magnetic field B k ẑ are to
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Figure 3.20: Current-voltage relation for Ug = 0:4 V for magnetic fields between B= 0 T and

B = 2:4 T. Negative differential resistance peak positions are marked by downward pointing

triangles.

be considered, the one-dimensional Esaki-Tsu model obviously has to be extended to more

spatial dimensions in order to take into account electron motion perpendicular to F and B due

to the Lorentz force, which couples the miniband motion to motion in the free ŷ direction.

Using the dispersion relation

E(x;y) =
∆
2
(1� cos(kxd))+

h̄2k2
y

2m�
(3.21)

the equations of motion are

dkx

dt
=�e

h̄
(F + vyB);

dky

dt
=

e
h̄

vxB;
dkz

dt
= 0 (3.22)

vx = vm sin(kxd); vy =
h̄ky

m�
; vz =

h̄kz

m�
:
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Figure 3.21: (a) Peak voltage Up versus magnetic field B evaluated for gate voltages between

Ug = 0:3 V and Ug = 0:5 V. Solid symbols are experimental values, the solid line is the best

quadratic fit to the data. The inset shows the quadratic fit parameter cp in dependence of the

gate voltage. The shape of the symbols defines the gate voltages in the main plot. (b) Peak

current Ip versus magnetic field for the gate voltages defined in the inset of (a). The solid

lines are drawn to guide the eye.

where vm = ∆d=(2h̄) is the drift velocity at zero magnetic field. The resulting coupled dif-

ferential equations

dkx

dt
= �e

h̄
(F +

h̄ky

m�
B) (3.23)

dky

dt
=

e
h̄

vmBsin(kxd) (3.24)

are solved by numerical integration. The mean drift velocity is then obtained by

< vx(F;B)>=
vm

τ

Z ∞

0
exp(�t=τ)sin(kx(F;B)d)dt (3.25)

and displayed for different magnetic fields in Figure 3.22. Parameters used for this calcu-

lation are: superlattice period d = 15 nm, electron scattering time τ = 1 ps, critical electric
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Figure 3.22: Mean electron velocity vs. electric field calculated for different magnetic field

strengths using an extended Esaki-Tsu model.

field at zero magnetic field Fc = 4:4� 104 V/m, and drift velocity at zero magnetic field

vm = 3:4�104 m/s.

As shown in Figure 3.23, in this model the peak velocity first increases, then decreases,

and its position linearly shifts to larger electric fields for increasing magnetic field strength

above a magnetic field of about B = 0:3 T. The fact that the peak electric field increases with

magnetic field strength is consistent with the experimental data, the functional dependence,

however, is linear in this model, but quadratic in the experiment. Additionally, the behavior

of the peak current, which here shows a maximum, is not consistent with the experimen-

tal observation, where the peak current exhibits a minimum. The experimentally observed

quenching of the negative differential resistance peak for low gate voltages is not reproduced

by this calculation.

3.5.3 Theory: Resonant tunneling

In this section the superlattice transport is treated as a resonant tunneling process rather

than in the miniband conduction picture. The problem of a particle tunneling between two

adjacent quantum wells in crossed electric and magnetic fields can be treated quantum me-
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Figure 3.23: (a) Calculated peak mean velocity < vx >p and (b) peak electric field Fp vs.

magnetic field B.

Figure 3.24: Electron tunneling in crossed electric and magnetic fields. The energy scale and

real space distances are drawn not to scale.

chanically in first order perturbation theory [Maa87] [Bas88]. It is found that the energy

levels are modified by a diamagnetic shift, and, most importantly, that the magnetic field

induces an energy term parabolic in superlattice direction, the minimum of which depends

on the electron momentum in the free electron direction. If the diamagnetic shift, and the

polarization of the wave functions due to the quantum confined Stark effect are neglected,
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the energy difference ∆E of an electron when tunneling between two neighboring quantum

wells, is given by

∆E =
e2B2d2

2my
; (3.26)

where my is the electron mass in the free y direction.

Semiclassically, this energy difference can be understood as a result of the momentum

transfer h̄ky = eBd from the (tunneling) x direction to the free y direction induced by the

Lorentz force, where d is the tunneling distance. Experimentally, relation (3.26) has been

tested in weakly coupled bulk superlattices for tunneling processes from the lowest to the first

excited subband [Mue93]. For the SLFET at hand, however, we consider electron motion

between the lowest minibands of adjacent quantum wells. The superlattice is hardly biased,

therefore neglecting the diamagnetic shift and the quantum confined Stark effect is a good

approximation.

The tunneling process is schematically drawn in Figure 3.24. An electron, that has re-

laxed to the energy minimum in the left quantum well, can resonantly tunnel to the right

quantum well only if the parabolic dispersion of this well intersect its energy level. This

condition can be met when an additional electric field ∆F = ∆E=(ed) with respect to the

zero-magnetic field case is applied. If a constant electric field across the superlattice of

length L is assumed, the magnetic field dependent peak voltage Up is given by

Up =U0
p +

edL
2my

B2; (3.27)

where U0
p is the peak voltage at zero magnetic field.

Relation (3.27) predicts a quadratic increase of the peak voltage with increasing mag-

netic field, exactly as observed in the experiment. Quite surprisingly, the prefactor cp =

edL=(2my), which contains no free parameter, is given by cp = 0:03, when we use the free

GaAs electron mass. This is exactly the value obtained from the fit to the experimental data

in Figure 3.21 for a gate voltage of Ug = 0:35 V. Even though the experimentally obtained

prefactors were gate voltage dependent, all observed values are consistent with this model

by order of magnitude. A density dependence is not included in this model.

3.5.4 Discussion

Main features observed in the transport experiment in crossed electric and magnetic fields

were a quenching of the negative differential resistance peak at low gate voltages, for Ug >
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0:3 V a quadratic shift of this peak to higher source-drain voltages with magnetic field,

and a minimum in the peak current. A semiclassical miniband transport model predicted an

increase in the peak voltage, but the functional dependence was incorrect. When the transport

was modelled as electron tunneling process between adjacent wells, a quantitatively correct

functional dependence was found for Ug > 0:3 V.

Both models are to be considered as limiting cases to the true transport physics. The

Esaki-Tsu model in a miniband of width ∆ is only valid for electric field strengths smaller

than ∆=(ed), while for F > ∆=(ed) electron states are localized by the electric field. In this

regime electron transport occurs by sequential tunneling between Wannier-Stark states, and

the resonant tunneling model may more favorably be applied, which correctly predicts the

quadratic increase of the peak voltage. This model, however, does not predict the quenching

of the negative differential resistance peak, and it does not include any density dependence.

Full energy relaxation and loss of phase information of the electron is assumed, which is

incorrect in the transition regime between miniband transport and resonant tunneling. More

sophisticated transport models must be developed here.

3.6 Towards ultra short channel vertical transistors

In May 2000 Infineon Technologies AG was celebrating the groundbreaking of the world’s

first 300 mm high-volume production facility in Dresden/Germany. Total investment is an

estimated 1.1 Billion Euro over the following three years. Technology will be 0.14 µm and

smaller, targeted product will be up to the 1GBit DRAM. 42 million 0.18 µm MOSFETs run

at a frequency of 1.5 GHz in INTEL’s recent Pentium-4 microprocessor, in 2005 this com-

pany plans to use a 0.07 µm technology. The INTEL founder himself, G. Moore, originally

expected his famous law to only hold until the quarter micron technology.

In view of these enormous technological advances on the one side, and of the high in-

vestments necessary on the other side, we wonder about the fundamental limits of the scaling

law. In this Section we briefly highlight possible extensions of the CEOFET for fabricating

ultra-short channel devices. These results have been obtained in collaboration with F. Ertl

and T. Asperger. Our two devices can be considered as atomically precise counterparts of the

two main recent developments in ultra-short channel silicon FETs. Both devices are vertical

structures, critical dimensions are lithography independent, and they differ in the way how

the source-drain isolation is achieved.

In Figure 3.25(a) we schematically show the first type of ultra-short channel CEOFET,

R. A. Deutschmann Two dimensional electron systems in atomically precise periodic potentials (2001)
Ph.D. Dissertation. Selected Topics of Semiconductor Physics and Technology, ISBN 3-932749-42-1



102 CHAPTER 3. HIGH FIELD MINIBAND TRANSPORT

Figure 3.25: (a) Schematic sample design of the heterobarrier CEOFET. (b) Schematic sam-

ple design of the planar doped CEOFET.

the heterobarrier CEOFET. The channel length is determined by the thickness of the Al-

GaAs barrier between source and drain. Intrinsic GaAs layers were added to avoid diffusion

of dopants into the barrier. The (110) overgrown GaAs layer defines the geometrical channel

thickness q. We study devices with source-drain barrier thickness of 50 nm and q between

20 nm and 40 nm. In some aspects a similar device has been developed by the Bell labora-

tories at Lucent Technologies. They have recently demonstrated a fully CMOS compatible

50 nm device, called the vertical replacement-gate MOSFET [Her00].

Our second type of CEOFET, the planar doped CEOFET, is shown in Figure 3.25(b). In

this case the source-drain barrier is replaced by a planar p-type doped layer. This modifi-

cation buys the advantage of improved source-drain isolation. Planar doped MOSFETs in

silicon technology have been extensively investigated by the Eisele group of the University

of the Armed Forces in Munich [Kae98].

Soon after they invented the cleaved-edge overgrowth technique, Stormer et al. have
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Figure 3.26: Current-voltage relation of heterobarrier CEOFETs. (a) q = 20 nm, (b) q =

30 nm, (c) q = 40 nm.

demonstrated a field-effect transistor fabricated by this method [Sto91a]. In their device,

a (001) GaAs quantum well acts as a gate to a (110) oriented two-dimensional electron

system. Processing this device requires lithography on the (110) face of a 100 µm thick

sample, which is, according to the authors, ”challenging but feasible”. The shortest gate

length to date realized by a conventional architecture has been presented by a French group

of the LETI lab in Grenoble [Del00]. Their n channel MOSFET has a 20 nm finished gate

length, fabricated on 200 mm silicon wafers with 1.2 nm silicon dioxide as gate insulator.

3.6.1 Heterobarrier CEOFET

In Figure 3.26 we present current-voltage data of heterobarrier CEOFETs with (110) GaAs

thickness of q = 20 nm, q = 30 nm and q = 40 nm, taken at T = 4:2 K. The electron channel

can be accumulated and depleted by applying positive and negative gate voltages. At this

temperature, leakage between source and drain is negligible. At room temperature, however,

the heterobarrier becomes transparent, and the gate leakage is intolerable. Some saturation
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Figure 3.27: (a) Calculated conduction band profile for the unbiased CEOFET, cut in z direc-

tion from the n+ GaAs gate through the gate barrier and the i GaAs channel into the n+ GaAs

source/drain contacts. (b) Conduction band profile for the CEOFET with applied gate voltage

of Ug = 0:7 V. A barrier exists between the source/drain contacts and the two-dimensional

electron gas. (c) Conduction band profile for the unbiased planar doped CEOFET, cut in x di-

rection from the n+ GaAs source contact through the source-drain barrier into the n+ GaAs

drain contact, calculated for different p δ-doping concentrations.

of the source-drain current can be observed. When comparing the three devices, the current

level decreases with increasing channel thickness. This is contrary to our intuition, and

contrary to the SLFET presented in Section 3.4, where the current level was increasing with

increasing (110) GaAs layer thickness.

The decreasing current level with increasing intrinsic GaAs layer thickness is explained

in Figure 3.27. In (a) we have calculated the conduction band profile for the unbiased device,

a cut from the gate contact in z direction through the gate barrier, the intrinsic GaAs and into

the n+ GaAs contact is shown. As can be seen, an upward band bending occurs at the

interface between i GaAs and n+ GaAs. When a positive gate voltage is applied, as expected

a two-dimensional electron gas is field-induced at the interface between gate barrier and
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Figure 3.28: Current-voltage relation of planar-doped CEOFETs. (a) q = 20 nm, (b) q =

40 nm.

i GaAs. There is, however, a barrier between the two-dimensional electron system and the

sourcing n+ GaAs contact, which has to be overcome by the electrons. This barrier becomes

significant for q > 30 nm and then causes an additional resistance, and the observed drop of

the current level for wide i GaAs layers.

3.6.2 Planar doped CEOFET

Current-voltage results obtained from the planar doped CEOFET at low temperatures are

shown in Figure 3.28. As with the heterobarrier CEOFET, the source-drain current can be

controlled both up and down by the gate. But even for large gate voltages of Ug = 0:9 V,

an ohmic behavior for low source-drain voltages cannot be achieved. Remarkably, the

q = 40 nm device comes closer to an ohmic trace than the device with narrower electron

channel. This can be understood using Figure 3.27(c). There we have calculated the con-

duction band profile between the source and the drain contacts, across the planar doped

source/drain barrier. As can be seen, depending on the p doping concentration, a rather high
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source-drain barrier is obtained. This is the reason that these devices can be operated even at

room temperature. On the other hand, the high conduction band energy between source and

drain depletes the electron channel, which leads to the observed high resistance for small

source-drain voltages. Only at large Usd the barrier in the channel can be overcome and

current flows. The barrier height is lowered by increasing the gate voltage.

3.7 Conclusion

In this chapter we have gathered strong evidence for the existence of Bloch localization in

SLFETs, using non-equilibrium transport experiments. We have found negative differential

resistance in SLFETs with miniband widths between 3.3 meV and 21.2 meV, most strongly

pronounced in the device with the narrowest miniband. The peak voltage was shown to be

independent of electron density over a certain range, in agreement with the Esaki-Tsu model.

Further we demonstrated that the peak current linearly increases with miniband width, again

in good agreement with the theory. Other possible reasons for negative differential resistance

are discussed and can be excluded, and reasons for stabilization of the charge density in

devices exhibiting a negative differential velocity relation are developed.

Additional current maxima beyond the negative differential resistance regime are ex-

plained by resonant emission of folded phonons by Bloch-oscillating electrons. Reference

samples did not exhibit negative differential resistance and were well-behaved vertical field-

effect transistors. Electron mobilities in the SLFETs were found to be high compared to the

reference samples, and even compared to the best modulation doped heterostructures grown

on (110) GaAs substrates. This fact makes them ideal candidates for electron density depen-

dent investigations in the fractional quantum Hall regime, as we will show in Chapter 6.

Non-equilibrium transport has been studied also in crossed electric and magnetic fields.

The observed shift of the negative differential resistance peak was discussed in a miniband

picture and in using a resonant tunneling model. Finally we have given a preview on pos-

sible extensions of the CEOFET concept to ultra-short channel field-effect transistors. First

devices with channel lengths of 50 nm were fully operable.
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Chapter 4

Transport in the Resonant Tunneling

Regime

Resonant tunneling is governed by the simultaneous conservation of energy

and momentum. These conservation laws depend on the dimensionality of the

source and drain reservoirs, and are fulfilled only for certain combinations of the

Fermi energy, the applied electric field, and the direction and strength of an ap-

plied magnetic field. Transport through resonant tunneling occurs in weakly

coupled multi-quantum well systems, and represents the opposite regime to

miniband transport in strongly coupled superlattices.

In this chapter we study a superlattice of weakly coupled quantum wires by

means of measuring the transverse tunneling current. Our SLFET offers the un-

paralleled opportunity to gain direct insight into the tunneling transport between

identical wires in the absence of contact effects, which greatly influence the

characteristics of few-barrier systems, such as resonant tunneling diodes. In our

coupled one-dimensional system, the conservation rules are particularly simple.

Quantizing magnetic fields perpendicular to the wires and the current result in

both spatial splitting of forward and backward moving electrons, and in a distor-

tion of the electron tunneling path, effects which leave their fingerprints on the

current-voltage characteristics. A magnetic field parallel to the current direction

changes the subband energies and results in a complex tunneling pattern. The

additional control over the Fermi energy in the quantum wires makes our SLFET

an ideal device to explore hitherto undisclosed tunneling regimes.

107
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4.1 Review on low dimensional resonant tunneling

Early tunneling experiments were concerned with 3D-2D, 2D-2D and 2D-1D tunneling. Ex-

periments to study tunneling between quantum wires have been studied much less. A review

on resonant tunneling experiments and theory up to the year 1991 can be found in [Cha91].

Up to now to our knowledge no studies have been reported on tunneling experiments between

an array of parallel quantum wires.

In a pioneering experiment Smoliner and coworkers studied the tunneling between two

separately contacted 2DEGs in transverse magnetic fields (magnetic field orientation paral-

lel to the tunneling barrier) [Smo89]. The two 2DEGs form at both sides of a modulation

doped AlGaAs barrier. They observe peaks in the first derivative of the tunneling current

that split and shift with increasing magnetic field. Classically the Lorentz force couples both

components of the momentum perpendicular to the magnetic field orientation. Quantum

mechanically this corresponds to the conservation of the canonical momentum. For an elec-

tron travelling a distance d through the barrier in x direction, the wave vector is changed in

y direction by (see Equation (3.26))

∆ky =
eBd

h̄
(4.1)

The fact that the resonances split into two peaks is due to the fact that electrons with positive

and negative parallel Fermi wave vector contribute to the tunneling current.

Later Eisenstein and coworkers measured on a similar coupled 2DEG system equilibrium

tunneling as a function of in-plane magnetic field and sheet density [Eis91]. For equal 2DEG

densities the tunneling current is sharply peaked around zero magnetic field, but varies slowly

at intermediate fields. Around 6 Tesla the conductance exhibits a weaker peak followed by

an abrupt drop to zero. A simple and very intuitive model of two displaced, but intersect-

ing, Fermi circles explains these results. As the magnetic field is increased, according to

Equation 4.1 the two Fermi circles shift across each other, and simultaneous conservation

of energy and momentum is possible only at certain values of magnetic field and electron

density.

Tarucha and coworkers were the first to study the effect of resonant tunneling through

one- and zero-dimensional states [Tar90]. Their device was a conventional resonant tunnel-

ing diode, which they confined laterally by focused ion-beam implantation. They observed

a series of resonant tunneling current peaks corresponding to the one dimensional levels

superimposed on the ground state confined by the heterojunction.
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Dignam et al. investigated 2D-1D-2D tunneling without magnetic field in a sample pre-

pared by cleaved-edge overgrowth [Dig94]. Their device was similar to the device studied

in our work, except that in their device only one quantum wire was involved. Tunneling

proceeds, in a planar geometry, from the edge of a 2DEG source through the bound states of

the quantum wire into the edge of a 2DEG drain. The barriers are 6 nm and 7.5 nm AlGaAs,

the wire width in between is only 5 nm. They find resonance peaks in the tunneling current,

which they attribute to a resonance between the edge bound states in the 2D system and the

first three bound states in the wire.

Wang and coworkers were the first group to study tunneling via 1D states in magnetic

field [Wan94]. Their wires, though, were fabricated by conventional lateral etching, and

thus rather wide (more than 100 nm). Experiments with magnetic field orientation parallel

and perpendicular to the wire are interpreted in the framework of the transfer Hamiltonian

formalism [Mor95]. They point out that at high magnetic fields oriented in z direction a weak

modulation of the tunneling current arises from the formation of 1D subbands in the emitter.

Other examples of tunneling structures fabricated by the cleaved-edge overgrowth tech-

nique include 3D-2D (1D) tunneling into the fractional quantum Hall edge [Cha96], 2D-

1D-2D, 2D-2D, and 2D-3D tunneling [Gra96], 1D-1D tunneling between two asymmetric

quantum-wires [Wan99], and, very recently, tunneling between the edges of two lateral (in-

tegral) quantum Hall systems [Sto00].

Resonant tunneling in coupled quantum systems has been studied in doped and undoped

superlattices. Undoped superlattices are usually embedded in a p-i-n diode in order to

achieve a homogenous field, and transport is investigated either by photocurrent-voltage

characteristics, or by time-of-flight experiments, while the diode is operated in reverse-

bias [Mue93]. For electrical transport experiments, carriers must be introduced into the

superlattice, usually by a fixed doping. This method, however, does not offer the same flexi-

bility as the SLFET, where we are able to tune the electron density by means of the gate, and

much higher (sheet) electron densities can be achieved.

Esaki and Chang were the first to observe current oscillations in a doped superlat-

tice [Esa74]. They already hypothesized that these oscillations were due to an expanding

high field domain. Their superlattice, however, was strongly coupled, and the low-field

transport occurred in the lowest minibands rather than by resonant tunneling. Only more

than ten years later, Choi and coworkers first investigated resonant tunneling in a weakly

coupled superlattice, and found very regular negative conductance oscillations resulting from

a periodic alignement of the two lowest quantum well states and an expanding high-field do-
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Figure 4.1: Resonant tunneling SLFET sample design.

main [Cho87]. Much theoretical and experimental work has been performed on these weakly

coupled superlattices since. Grahn at al. found an increasing plateau current and a shift of

the current resonances to higher electric fields in a magnetic field parallel to the superlattices

layers [Gra91]. In Section 4.4 we perform a similar experiment for coupled quantum wires.

Kastup et al. observed hysteresis between up- and down sweeps of the source-drain voltage

due to the charge trapped in one quantum well at the boundary between the high- and the low-

field domain [Kas94]. Recently, weakly coupled superlattices are much discussed in relation

to self-sustained current oscillations [Wac97], as well as driven and undriven chaos [Luo00].

4.2 Sample design and band structure calculation

The sample structure of the resonant tunneling SLFET is shown in Figure 4.1. It is based

on the SLFET discussed in Chapters 2 and 3, only the AlGaAs superlattice barriers were

replaced by AlAs barriers to increase the barrier height, thus decreasing the coupling strength

between the quantum wells to generate weakly interacting quantum wires. On the semi-

insulating (001) GaAs substrate the layer sequence is 1 µm n+ GaAs (doped to n = 2�
1018 cm�3), 50 periods of 11.9 nm GaAs and 3.1 nm AlAs (period length d = 15 nm), 1 µm

n+ GaAs (doped to n = 2� 1018 cm�3. After the cleave the regrowth consists of 100 nm
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Figure 4.2: (a) Band structure calculated in the Kronig-Penney model. The bands are labelled

according to the quantization index in the x and z direction Exz. (b) Enlargement of the lowest

subband.

AlAs, and 200 nm n+ GaAs (doped to n = 2�1018 cm�3). The (001) doped layers serve as

source and drain contacts, while the (110) doped layer is used in the usual way as a gate. The

channel length, i.e. the total distance travelled by the electrons from source to drain through

the coupled quantum wires, is L = 750 nm.

The calculated (Kronig-Penney) band structure is shown in Figure 4.2. We label the

bands according to the quantization index in the x and z direction Exz. As a result of the

small overlap of the wave functions between two adjacent quantum wells, minibands are

very narrow. For the present superlattice we retrieve much rather the quantum well energy

levels. The broadening of the lowest level due to this overlap, enhanced in Figure 4.2(b), is

less than 0.1 meV. This band width is comparable to the thermal broadening, and additionally

we expect the broadening due to impurities and interface roughness to be at least of the same

order. The first excited quantum well level lies E10�E00 =85 meV above the ground state.

In the experiment we will be concerned with the lowest energy level E00. In addition to
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the quantum well energy levels, determined by this Kronig-Penney calculation, we have

previously found by self-consistent two-dimensional calculations in Chapter 2 the presence

of excited states due to the confinement in the z direction. Owing to the wider extent of the

wave functions in z direction, the subband spacing between the lowest and the first excited

level in z direction is only about E01�E00 =15 meV, and thus much smaller than the quantum

well subband spacing. In Figure 4.2(a) the level E01 is drawn with a dashed line. In the

experiment we are concerned with these lowest energy states of the system E00 and E01.

4.3 Resonant tunneling in zero magnetic field

In this section we present current-voltage measurements, obtained at zero-magnetic field for

different gate voltages. Additional information is gathered in the two following sections by

applying a magnetic field perpendicular to the wire direction, either perpendicular or parallel

to the current flow. All experiments are performed at temperatures between T = 330 mK

and T = 4:2 K, the results are found to be insensitive to temperature in this range. The

measurements are obtained by keeping the upper (source) contact grounded, while applying

the positive source-drain voltage Usd to the lower (drain) contact. The gate potential Ug is

defined with respect to ground.

4.3.1 Experimental current-voltage traces

In Figure 4.3 we show gate voltage dependent current-voltage traces. The gray value picture

is intended to demonstrate source-drain current maxima (white) and minima (black), that are

otherwise difficult to see in the current-voltage traces due to their small amplitude. It has

been obtained by dividing the second derivative of the source-drain current with respect to

the source-drain voltage by the negative first derivative. Below a gate voltage of Ug = 0:3 V

the SLFET is insulating, indicating that the Fermi energy in the supplying contact is below

the lowest energy state in the quantum wire system. For gate voltages up to Ug = 0:51 V

the current increase at small Usd is diode like, as a result of the exponential dependence

of the tunneling current on the lowered barriers with increasing bias. An ohmic behavior

at small source-drain voltages is observed above Ug = 0:52 V, at which point the contact

Fermi energy matches the lowest energy state in the quantum wire system. The fact that this

condition can be met is a unique feature of the SLFET, and makes possible the observation of

current features at very small bias voltages, that would otherwise be masked by the current
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Figure 4.3: Current-voltage relation.
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suppression due to the barrier.

Starting at a gate voltage of Ug = 0:48 V a pronounced negative differential resistance

peak at Usd = 11 mV appears (region A), which only slightly shifts to Usd = 18 mV for the

largest gate voltages of Ug = 0:86 V. For larger Usd the current saturates. The current level,

however, is two orders of magnitude smaller than typical saturation currents obtained with

SLFET of identical period length, see Chapter 3. The reason is the much weaker wire to wire

coupling in the present SLFET, which results in tunneling transport rather than miniband

transport.

As the gate voltage is raised, other features besides the negative differential resistance

peak are observed at larger Usd . In the quadrant (Usd > 125 mV, Ug > 0:55 V), small am-

plitude current oscillations appear (region C), the positions of which are gate voltage in-

dependent. The current oscillation amplitude is below 1% of the source-drain current, and

their period at Usd = 0:25 V is about ∆Usd = 17 mV, and increases for larger source-drain

voltages. A magnification of these oscillations for Ug = 0:8 V is shown in Figure 4.3. At

intermediate source-drain voltages (region B), another current feature is observed as peak

and double-peak maximum at Usd = 56 mV.

4.3.2 Resonant tunneling model

We explain the current-voltage relation using Figure 4.4. The dispersion of the two lowest

energy levels is shown for two adjacent quantum wires. In this low energy regime, the disper-

sion in the free y direction is parabolic. As shown in Figure 4.4(a), at very small bias, tunnel-

ing proceeds for electrons originating in the lowest energy level of the left quantum wire E00

to empty states in the lowest level of the right quantum wire. Simultaneous energy and mo-

mentum conservation is only guaranteed for a small bias region around zero bias correspond-

ing to the width of the energy levels. The current peak in region A thus results from ground

state to ground state tunneling. The width of this current peak ∆Usd = 10 mV is remarkably

small. The resulting width of one energy level ∆E = 10 meV/50 periods=0.2 meV/period

corresponds to the thermal energy at T = 4:2 K. This indicates that at this temperature the

level width is not limited by the finite electron lifetime in one quantum wire, or by scatter-

ing, but rather by temperature. The current peak itself occurs at a very small electric field

Fpeak =Upeak=L = 145 V/cm, which is smaller than the peak electric field observed in mini-

band transport, see Chapter 3. For larger source-drain voltages the ground state to ground

state resonance condition is destroyed, and the source-drain current decreases beyond the
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Figure 4.4: Resonant tunneling model. Energies are not drawn to scale, only the two lowest

energy levels are shown. (a) Ground state to ground state tunneling at almost zero bias.

(b) Ground state to first excited state tunneling. The superlattice is drawn for two different

resonance conditions.

first peak. The valley current is determined by non-resonant tunneling events.

For larger source-drain voltages, the current peak observed in region B is explained by

a resonant tunneling process between the ground states of two adjacent quantum wires un-

der the emission of a longitudinal optical phonon. The voltage difference between the pro-

nounced current maximum at Usd=56 meV and the ground state to ground state current max-

imum at Usd=18 meV matches nicely the GaAs LO phonon energy of E = 36 meV [Ins90].

A genuine effect of the coupled quantum wire system, however, are the current oscilla-

tions observed at even larger Usd in region C. As shown in Figure 4.4(b), we assert that a

resonance condition can be met in the superlattice for tunneling between the ground state E00

of one quantum wire to the first excited state E01 of the adjacent wire. The excited state con-

sidered here results from the quantization in z direction, and is offset from the ground state,
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as mentioned before, by ∆ = 15 meV. As the source-drain voltage is increased, a periodic

increase of the source-drain current is expected, as the resonance condition is periodically

met. The periodicity ∆Usd is given by the energy difference between the participating energy

states ∆, which is in fact observed in the experiment. Under bias, the wire system consists of

two domains with different electric field. The low field domain is characterized by ground

state to ground state tunneling, while in the high field domain ground state to excited state

tunneling prevails. The current is limited by the domain boundary, which is formed by a

negative charge accumulation within one quantum wire. The high field domain grows at

the cost of the low field domain for increasing Usd . The fact that ground state to excited

state tunneling is observable only above a gate voltage of Ug = 0:55 V is explained by the

fact that a certain minimum electron density is required to account for the change in electric

field between the high-field and the low-field domain. Furthermore, as Usd is increased, the

relative drain to gate voltage decreases, and the electron density in the high-field domain

gradually decreases. With the corresponding decrease in the local Fermi level of the ground

states in the high-field domain, the resonance condition is reached at larger fields. Therefore

we expect the period of the current oscillations to increase with increasing source-drain volt-

age, which is in fact observed in the experiment. In this model we neglect the energy level

shift due to the quantum-confined Stark effect, which is a good approximation for the small

electric fields and small well widths in our experiment.

The intersubband scattering time τrelax depends on the availability of relaxation pro-

cesses. For an intersubband spacing larger than the optical phonon energy in GaAs h̄ω =

36 meV, τrelax can be below 1 ps. In our case the intersubband spacing ∆ is much smaller,

and large scattering times may be expected. However, in superlattices intersubband scatter-

ing may also be mediated by folded acoustic phonons (see Section 3.3.3).

4.4 Resonant tunneling in a perpendicular magnetic field

In this section we discuss current-voltage traces obtained in a magnetic field Bperp, defined

in Figure 4.1, for fixed gate voltages. The magnetic field is oriented perpendicular to the

quantum wires and the current direction. First we present experimental data, which we

subsequently explain by a semiclassical model.
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Figure 4.5: Current-voltage relation in perpendicular magnetic field at Ug = 0:5 V.
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4.4.1 Experimental current-voltage traces

In Figure 4.5 the current-voltage relation for a gate voltage of Ug = 0:5 V in a perpendic-

ular magnetic field between B = 0 T and B = 8 T is shown. The current-voltage data has

been processed in the aforementioned way to obtain the gray value plot, which shows the

evolution of the current maxima (white) and minima (black) in the covered parameter space.

The peak current of the ground state to ground state resonance drastically increases with

increasing magnetic field, in sharp contrast to the behavior in the miniband transport regime

(see Section 3.5). Furthermore, the peak voltage remains at about Usd = 14 mV for magnetic

fields up to B = 3 T. For larger fields, the peak voltage increases rapidly. For B> 6 T, a sharp

transition is observed, characterized by a simultaneous quenching of the source-drain cur-

rent and the negative differential resistance peak. For large magnetic fields, the source-drain

current is suppressed at low bias, and increases super-linearly with the source-drain voltage.

For a larger gate voltage of Ug = 0:7 V, we observe similar overall behavior, (see Fig-

ure 4.6), characterized by a drastic increase of the peak current, and a positive shift of the

peak voltage. The quenching of the source-drain current occurs at the same magnetic field as

for the lower gate voltage. In this measurement, however, we additionally observe a signif-

icant increase in the peak-to-valley ratio of the ground state to ground state tunneling peak

with increasing magnetic field. The negative differential resistance part of the current-voltage

relation beyond the peak even becomes steeper than the external lead resistance, resulting in

a discontinuous current drop. Additionally, at this gate voltage the ground state to first ex-

cited state resonances are observed. We find that below a magnetic field of B = 2 T their

position does not change, while above B = 2 T they are interrupted by a current feature that

rapidly moves to larger source-drain voltages with increasing magnetic field.

4.4.2 Theory for the ground state to ground state resonance shift

In Section 2.4 we have derived the Schrödinger equation for a superlattice electron in a

perpendicular magnetic field (see Equation (2.61))

�
1

2m�
p2

x +
1

2m�
(h̄ky + eBx)2 +V (x)

�
ψ(x) = E(ky)ψ(x): (4.2)

For all relevant magnetic fields, the quantum well subband spacing is much smaller than the

magnetic energy, therefore the first order correction to the ground state energy caused by the
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Figure 4.6: Current-voltage relation in perpendicular magnetic field at Ug = 0:7 V.
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Figure 4.7: Back and forward scattering conservation conditions between adjacent wires.

(a)-(c) Back scattering resonance condition for increasing magnetic field at vanishing bias.

In (a) resonance is achieved below the Fermi energy, in (b) at the Fermi energy, and in

(c) above the Fermi energy. At this high field tunneling is only possible for a bias ∆E > 0.

(d) represents the forward scattering condition at the same magnetic field as in (b).

presence of the magnetic field is given by [Maa87]

E =
h̄2

2m�

�
ky +

eBhxi
h̄

�2

+
e2B2

2m�

�hx2i�hxi2� ; (4.3)

where hxi= hψ0jxjψ0i and hx2i= hψ0jx2jψ0i. The last term represents the diamagnetic shift

of the ground state energy, while the first term can semiclassically be interpreted as due to

the Lorentz force acting along the free y direction, changing the electron momentum ky upon

tunneling across the barrier in x direction by the amount ∆ky = eBhxi=h̄.

In Figure 4.7 we show the dispersion relation of a tunneling electron relative to the tar-

get dispersion, which is shifted by ∆ky. The magnetic field strength determines the offset

between both parabolas. As can be seen, due to this shift, states in different wires with the

same ky are generally no longer degenerate in energy, and elastic tunneling between these

states is forbidden. For any given bias there are, however, points of intersection between
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the two parabolas, at which energy and momentum conserving tunneling is allowed. If the

corresponding state in parabola 1 is occupied, but empty in parabola 2, tunneling can occur.

The relation between the momentum ky, the momentum change ∆ky, and the energy

difference ∆E at resonance, is given by

∆E� =
h̄2∆k2

y

2m�
� h̄2ky∆ky

m�
(4.4)

For any combination of ky and ∆ky there are two possible energy differences. Concerning

states at the Fermi energy ky = kF, we realize, that for any combination of kF and ∆ky there are

positive solutions ∆E+. Solutions ∆E� > 0, however, can only be obtained for large enough

magnetic fields, such that ∆ky > 2kF. Scattering events corresponding to ∆E+ occur between

the leftward moving branches of the dispersion parabolas 1L ! 2L, whereas scattering events

corresponding to ∆E� > 0 occur between the rightward moving branch and the leftward

moving branch of the parabolas 1R ! 2L. These are back scattering events which require a

momentum change 2kF.

In the gray value parts of the Figures 4.5 and 4.6 we have plotted the calculated volt-

age drop ∆Usd = N∆E�=e for both forward and backward scattering events, using N = 50

periods, a line density of n1D = 1:2� 1015 d 1/m and n1D = 1:3� 1015 d 1/m, respectively,

resulting in Fermi vectors kF = πn1D = 5:65�107 1/m and kF = πn1D = 6:13�107 1/m, re-

spectively. The momentum change ∆ky = eBd=h̄ was calculated using the superlattice period

d = 15 nm as tunneling distance.

Comparing the experimental data with the calculation, the sudden increase of the ground

state to ground state tunneling peak coincides with the calculated back scattering resonance

position. Surprisingly, the current maxima, that rapidly shift to larger source-drain voltages

with increasing magnetic field, seem to correspond to the forward scattering resonance con-

dition. In Figure 4.6 the fact that the ground state to first excited state resonance peaks cease

to exist at around B = 1 T is therefore explained by the fact that forward scattering becomes

more favorable at these fields.

4.4.3 Theory for the tunneling current increase

In Figure 4.8 we explain why the tunneling current is increasing with increasing magnetic

field. Forward and backward moving electrons are shifted to opposite sides of the wire

due to the Lorentz force. In single ballistic quantum wires this effect has been found to
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Figure 4.8: Tunneling probability and cyclotron radius.

result in a suppression of the back scattering probability and an increase of the wire con-

ductivity [Rot00]. For our experiment it is important to realize that as the magnetic field is

increased, the effective tunneling distance between the forward moving electrons 1R and the

backward moving electrons 2L decreases, and the tunneling probability thus increases. This

effect explains our experimental observation of an increasing source-drain current with in-

creasing magnetic field. Eventually, for magnetic fields so large that the cyclotron radius of

the tunneling electron rc = h̄kF=(eB) becomes smaller than half the period of the superlattice,

tunneling is effectively quenched. For the Fermi vector kF = 5:65�107 1/m used before, the

critical magnetic field is B = 5 T, in nice agreement with the experimental observation of a

quenching of the tunneling current for B > 6 T.

Interestingly, the quenching of the source-drain current at high magnetic fields is re-

lieved by a sufficiently large source-drain voltage. This observation is reminiscent to the

tunneling experiment by H. Stormer, W. Kang et al. between the edges of a quantum Hall

system [Sto00]. The parabolic magnetic confinement potential of both neighboring systems

overlap in the superlattice barrier, and an applied electric field results in an effective barrier

lowering, and thus an increasing source-drain current.

4.5 Resonant tunneling in a parallel magnetic field

In this section we discuss current-voltage traces obtained in a magnetic field Bparallel parallel

to the tunneling current, and perpendicular to the quantum wires, as defined in Figure 4.1.

We present experimental data for a fixed gate voltage, and qualitatively explain the results.
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4.5.1 Experimental current-voltage traces

In Figure 4.9(b) we plot the B = 0 T trace (black) and the B = 14 T trace (gray), obtained for

a fixed gate voltage Ug = 0:75 V. The traces have manually been offset by ∆Isd = 50 nA for

clarity. As can be seen, the ground state to ground state peak barely shifts between B = 0 T

and B = 14 T, and also the double peak at Usd = 56 mV remains unchanged. As expected for

a magnetic field parallel to the current, the tunneling current level Isd in the plateau region is

also unchanged. When we trace the ground state to first excited states in the gray value plot,

however, a quite complicated behavior is found. In region A for fields between B = 0 T and

B = 2 T, the positions of these current peaks orderly increase with increasing magnetic field.

In region B we observe a rather linear increase of current maxima, whereas in the high-field

region C these maxima become magnetic field independent. In addition, at the beginning

of region C diamond-shaped anticrossing features are observed. The B = 14 T trace has

additionally been expanded by a factor of 10 in the current-voltage plot to make visible the

current oscillations. The period of the current oscillations at this field is ∆Usd = 30 mV.

4.5.2 Qualitative model

A magnetic field applied parallel to the current direction does not exert a Lorentz force on

the tunneling electrons, the tunneling path is therefore independent on the magnetic field

strength. The energy levels, however, are still changed by the field. The ground state to

ground state tunneling will be unaffected by this change, since the ground states of all wires

are changed in the same manner. This explains our experimental observation of a constant

position for the ground state to ground state tunneling peak. The relative energy difference

∆ between the ground and the first excited level, however, will depend on the magnetic field.

As long as B can be treated as perturbation to the energy levels, i.e. h̄ωc < ∆ = 15 meV, or

B < 8 T, the first order correction to ∆ will be quadratic in B. Any given wire will contribute

an energy shift quadratic in B to the total voltage drop Usd across the superlattice, which for

wire n can therefore be written as

U (n)
sd (B) = n∆(1+ cB2) (4.5)

In Figure 4.9(a) we have plotted the resulting parabolas, using c = 0:12 as fit parameter. As

can be seen, in region A this theory results in an excellent fit.

In order to explain our observation of a linear shift of the current maxima in region

B, we assert that in this regime we observe inter-Landau level tunneling between quantum
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Figure 4.9: Current-voltage relation in parallel magnetic field at Ug = 0:75 V.
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wires. Inter-Landau level tunneling has been observed between the quantum wells of a bulk

superlattice [Hig89]. In ideal systems, inter-Landau level tunneling is forbidden since har-

monic oscillator eigenfunctions are orthogonal. This selection rule, however, is relaxed by

variations in the z direction electric field between adjacent wires, as well as any scattering

processes, such as interface roughness and impurity scattering (elastic), or phonon emission

(inelastic). Can we speak about Landau levels in a one-dimensional system? If the magnetic

field is strong enough, and the magnetic length becomes comparable to the quantized wire

dimensions (the z direction in our case), the system is no longer strictly one-dimensional,

so that the formation of Landau levels is perceivable. In order to find the energy scale for

inter-Landau level tunneling, we calculate the expected voltage drop across the superlattice

if all wires were tunneling from the lowest to the first Landau level

Usd(B) = N
h̄

m�
B; (4.6)

where N = 50 is the amount of quantum wires in the superlattice. The resulting resonance

condition is plotted in Figure 4.9(a) as a straight line from point (B;Usd)=(0 T, 0 V) to

(B;Usd)=(8.1 T, 0.7 V). As can be seen, the prevailing tunneling mechanism in region B in

fact is consistent with inter-Landau level tunneling. To our knowledge, inter-Landau level

tunneling between one-dimensional systems has not been observed to date.

In the high-field region C for fields B > 8 T, the magnetic field cannot be treated as a

perturbation to the zero-field eigenstates. We observe magnetic field independent current

maxima with a period larger than the zero-field oscillation period. For this regime we do not

have a theory at present.

4.6 Conclusion
In this chapter we have presented a superlattice consisting of weakly coupled quantum wires.

The dominant transport mechanism was found to be resonant tunneling, rather than miniband

transport as in previous chapters. We have identified two main tunneling processes. First,

ground state to ground state tunneling occurred at electric fields close to zero. The observ-

ability of this process is possible in the SLFET because the Fermi level in the contacts can be

raised to match the wire ground states by means of the gate. The second tunneling process

occurred between the ground state and the first excited wire state, and resulted in a series of

almost periodic current oscillations.

Transport through the superlattice was greatly affected by the application of magnetic

fields perpendicular to the wires. A magnetic field applied perpendicular to the current di-
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rection, in a simple picture, resulted in a distortion of the tunneling path, and in an effective

splitting and shift of the resonance condition. We have found signatures of both forward and

back scattering tunneling events. In a parallel magnetic field orientation a direct observation

of the energy level change with magnetic field was possible. Furthermore, at higher magnetic

fields, inter-Landau level tunneling between quantum wires may explain the observed linear

shift of the resonances. Current oscillations in the high-field regime await an appropriate

theory.

Although we have been able to account for most of the experimental findings, our theory

can be quantified by a number of ways. Self-consistent and quantum mechanical calculations

of the wire eigenstates without and with an applied magnetic field should be performed. The

transport via resonant tunneling should be calculated self-consistently using Poisson and

continuity equations with appropriate tunneling and relaxation times, and using the correct

potential distribution in the channel. The tunneling process can be modelled more realisti-

cally, taking into account the finite Fermi energy, the magnetic field dependent transmission

probability across the barrier, the change of the electron wave function and density distribu-

tion in the wires at an applied magnetic field, the density of states, and the finite temperature.

We remark that our SLFET may be considered as a model for coupled one-dimensional

correlated electron systems, or Luttinger liquids. Luttinger liquids are quintessential scale-

invariant non-Fermi liquids with correlation functions exhibiting power-law behavior, typi-

cally with anomalous exponents [Rot00]. In the past few years experimental evidence has

been gathered for static or dynamic charge inhomogeneity in several strongly correlated

electronic systems, such as high-temperature superconductors, and quantum Hall systems.

In two dimensions these structures are linear and are known as stripes. Stripe phases may

be insulating or conducting. Kivelson and coworkers [Car00] have recently proposed that

quite generally the quantum mechanical ground states, and the thermodynamic phases which

emerge from them, can, on the basis of broken symmetries, be characterized as electronic

liquid crystal states. In their theory, a conducting stripe ordered phase is an electronic smec-

tic state, while a state with only orientational stripe order (such as is presumably observed

in quantum Hall systems) is an electronic nematic state. In their recent analysis [Eme00],

which is asymptotically exact in the limit of weak interstripe coupling, they find that in ad-

dition to an insulating stripe crystal phase, a variant of a Wigner crystal, there exist stable

smectic phases, one of which is a stripe ordered smectic superconductor. We suggest that the

SLFET may serve as an ideal device to test these theories in an array of weakly interacting

Luttinger liquids.
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Chapter 5

Quantum interference in artificial band

structures

The fundamental understanding of solid state physics greatly gained from

the study of metals. In 1930 people like Landau, Shubnikov, de Haas and van

Alphen inaugurated the rise of Fermiology, which culminated in an explanation

of magnetoresistance oscillations from the metallic band structure by Onsager,

Lifshitz, Shoenberg, Pippard and others in the ’50 and ’60. With the inven-

tion of the semiconductor superlattice in 1969 by Esaki and Tsu, artificial band

structures could be designed and have extensively been studied until today.

In this chapter we try to complete the circle to the metals by making visible

hitherto undisclosed band structure effects, and quantum interference phenom-

ena previously observed in metals. First, within the previously fabricated lateral

surface superlattices (LSSLs) we position our cleaved-edge overgrowth super-

lattice field-effect transistor (SLFET) and point out its peculiar features. Then

our experimental results are presented, together with our semiclassical model for

their explanation, and the relation to metal physics is established. In a trailing

section we present another novel type of LSSL fabricated using a focused laser

beam.
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Figure 5.1: (a) Band structure of a periodically modulated system in the extended zone

scheme. The Brillouin zone boundary is k0 = π=d, where d is the modulation period.

(b) Fermi contour of the modulated system.

5.1 Artificial band structures

In this chapter we are interested in studying weakly modulated electron systems. The

term ’weakly’ refers to the fact that the amplitude of the perturbing potential V0 is much

smaller than the Fermi energy EF of the system. Equivalently, the electron density mod-

ulation amplitude is much smaller than the electron density. When a perturbing potential

of period d in x direction is applied to a two-dimensional electron system, the parabolic

dispersion relation of the free system is modified mainly at the Brillouin zone boundaries

kx = nk0; n = �1;�2 � � � ; k0 = π=d, where small energy gaps open up. This situation is

shown in Figure 5.1(a), where we have calculated the dispersion relation using the Kronig-

Penney model with a modulation amplitude V0 = 1:6 meV.

Since we are only concerned with one-dimensional modulation patterns, in a two-

dimensional electron system the electrons can move freely in y direction, where the disper-

sion is parabolic. The resulting Fermi contour for Fermi energy EF = 7:5 meV is shown

in Figure 5.1(b). The contour resembles the known Fermi circle for undisturbed two-
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Figure 5.2: Overview of lateral superlattice patterning methods. Shown is the heterostruc-

ture, the density ns(x) of the modulated electron gas, and relevant patterning features.

(a) Holographic illumination. The DX centers in the donor layer are partially ionized.

(b) Metallic top gates. (c) Shallow etching. (d) Growth on vicinal surfaces. (e) Cleaved-

edge overgrowth. (f) Cleaved-edge overgrowth with set back superlattice, represents the

SLFET investigated in this chapter.

dimensional systems, only at the Brillouin zone boundaries the closed contour is interrupted.

In the following we will learn about the consequences of this change in topology on the

magnetotransport of electrons.

How can such model systems actually be fabricated? Two classes of fabrication methods

can be distinguished, and we have summarized the most prominent methods schematically

in Figure 5.2. The first class modifies surface properties of a two-dimensional electron gas

to achieve a periodic density modulation. A special type of magnetoresistance oscillations,

the Weiss oscillations, have first been observed in devices fabricated by holographic illu-

mination of a modulation doped heterostructure [Wei89] [Ger89], see Figure 5.2(a). These

Weiss oscillations will be discussed in more detail in Section 5.3.7. The fringe pattern of

two interfering laser beams locally ionizes the DX centers at low temperatures to produce

one-dimensional or two-dimensional density modulations. This in situ method is of great

versatility, as different superlattices can be fabricated on the same sample in different cool-

downs. It is, however, limited to weak potential modulations, and period lengths only down

to d = 265 nm have been reported [Wei92], naturally limited by the wavelength of the used

laser. Many groups have resorted to using metallic top-gates to locally deplete the under-

lying electron gas [Win89], see Figure 5.2(b). Although the electron density can be varied
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by changing the gate voltage, at the same time the potential modulation amplitude is al-

tered. Additionally, a contribution to the electron density modulation results from the strain

caused by the different thermal expansion constants of the metal and GaAs [Lon99]. Strain

is avoided by shallow etching a modulation doped heterostructure, which due to surface de-

pletion results in the desired electron density modulation [Mue94], see Figure 5.2(c). High

electron mobilities are pertained such that even composite Fermions could be studied in

these samples [Sme98], and evidence of Hofstadter’s fractal energy spectrum in the quan-

tized Hall conductance has been gathered [Alb01]. Generally, with methods that modify the

sample surface properties, period lengths not much below the distance between the surface

and the two-dimensional electron gas can be achieved.

A second class of patterning methods modifies the very vicinity of the electron gas, and

uses self-organized growth methods rather than lithography. This way much shorter period

lengths can be obtained. One exploits the corrugated growth on high-index surfaces and the

fact that atomic steps modify the electrostatic potential in a two-dimensional electron gas,

see Figure 5.2(d). Experiments were performed using metal-oxide-semiconductor structures

prepared on high-index silicon [Col77] [Mat82], and p InSb [Eve86] surfaces. On vicinal

(111)B GaAs surfaces multi-atomic steps with a periodicity of a few tens of nanometers

were generated [Nak98] [Sak99], similar devices were fabricated on GaAs (001) vicinal

planes [Fuk88] [Mot89] [Tsu90]. All these structures have the advantage of small period

modulations, but due to the self-organized growth, the superlattices are irregular and fine

structures, such as narrow minigaps in the artificial band structure, are smeared out.

With the cleaved-edge overgrowth technique the best of both worlds can be combined.

The electron gas is directly accessed to generate a short period potential modulation, and the

preciseness of molecular beam epitaxy growth guarantees highly regular superlattices. The

first such superlattice, invented by Stormer et al. [Sto91b], was very strongly modulated,

and no superlattice effect was reported. Magnetotransport on similar samples revealed the

formation of one-dimensional subbands [Ohn95] and an enhancement of the effective elec-

tron mass in the lowest miniband [Maj00]. Our SLFETs, investigated in Chapter 2, 3 and

4, are modified with respect to these devices, and schematically shown in Figure 5.2(e). A

two-dimensional electron gas is field-induced within a perpendicularly oriented a superlat-

tice. SLFETs combine high electron mobility, atomically precise potential modulation, and

electron density tunability. The SLFET investigated in this chapter is schematically shown

in Figure 5.2(f). A weak potential modulation is obtained by a set back superlattice. Period

lengths are comparable to the shortest period lengths reported in the literature on lateral sur-
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face superlattices, while the preciseness is unprecedented. This device will be discussed in

detail in the following section.

Other methods have been developed for the fabrication of special superlattices, which

include laser interference melting of the heterostructure surface [Neb97], and surface oxida-

tion of the sample surface by the conductive tip of an atomic force microscope [Hel98]. In

Section 5.4 of this chapter we demonstrate the successful fabrication of lateral surface doped

superlattices using a focused laser beam.

The theoretical understanding of the experimental results on the SLFET, presented in this

chapter, was developed in collaboration with C. Albrecht and J. Smet, Max-Planck-Institut

für Festkörperforschung, Stuttgart. In an independent work they observed different electron

orbits in lateral surface superlattices with two-dimensional modulation [Alb98a] [Alb98b].

Our work represents the first demonstration of different electron orbits in the textbook one-

dimensional case. Part of this work has previously been published in [Deu00b] and [Deu01c].

The work on the superlattices fabricated by focused laser beam induced doping was done in

collaboration with C. Stocken and has previously been published in [Deu01a].

5.2 Self-consistent calculation

The vast majority of studies on low-dimensional electronic structures is performed using

gated heterostructures. The calculation of the electron density in dependence of the gate

geometry, the gate voltage and the distance between the gate and the two-dimensional elec-

tron system requires the correct modelling of mechanical strain due to the different elastic

constants of the gate metal and the superlattice material. The electronic structure in the

SLFET can be calculated using the layer thicknesses and material composition, which are

defined to atomic precision by the molecular epitaxy beam growth. Comparable calcula-

tions [Tok89] [Tok90] have only been performed for fractional layer superlattice devices

which cannot be applied to the present case because of the different geometry. In this sec-

tion we present calculations of the electron density, the electrostatic potential and the band

structure obtained with a two-dimensional Poisson-Schrödinger solver [Rot99a][Rot00]. We

demonstrate that it is crucial to consider the two-dimensionality of the problem, as the elec-

tron density is found to be modulated not only laterally in the plane of the two-dimensional

electron gas, but also in the z direction, contrary to what is commonly assumed for gated

structures.
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Figure 5.3: (a) Part of the SLFET structure, schematically drawn to scale. (b),(c) Self-

consistently calculated conduction band profile and electron density, shown is a cut in z direc-

tion at superlattice well position x = 50 nm (b) and at superlattice barrier position x = 100 nm

(c).

5.2.1 SLFET structure and electron density

The superlattice field effect transistors (SLFETs) under investigation in this chapter consist

of a 30 period 50 nm GaAs/50 nm Al0:3Ga0:7As superlattice grown in (001) direction, sand-

wiched between two n+ GaAs contacts. In (110) direction the layer sequence consists of

q nm GaAs, a 100 nm AlAs barrier, and a 200 nm n+ GaAs gate contact. We investigate

SLFETs with q between 10 nm and 40 nm. In reference samples the superlattice was re-
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placed by a 3µm AlGaAs layer with reduced aluminum content of only 5%. For the present

calculation we consider an SLFET with q = 30 nm.

The SLFET is simulated in the (x;z) plane, and part of the simulated structure is shown

in Figure 5.3(a). Two Fermi systems are defined, one includes the gate contact, the other the

two-dimensional electron gas. The gate voltage is defined as the potential difference between

these two Fermi systems. In Figures 5.3(b) and (c) one-dimensional cuts through the two-

dimensionally calculated conduction band and electron density are displayed for x = 50 nm

(through the superlattice well) and x = 100 nm (through the superlattice barrier). A gate

voltage of Ug = 0:2 V is assumed here. The electron gas is localized close to the gate barrier

at z = 300 nm, and extends to larger distances towards the z direction for the case of the

superlattice well. For the case of the superlattice barrier, the electrons are entirely confined

in the (110) GaAs well.

The calculated three-dimensional electron density distribution is shown in Figure 5.4(a).

The electron gas is localized close to the gate barrier, but as can be seen from the contour

lines, it extends into the superlattice wells. The density modulation becomes apparent when

the electron density is integrated over the z direction to obtain the two-dimensional density

ns, as shown in Figure 5.4(b). At x positions of the superlattice well, ns is increased with

respect to the mean density. In Figure 5.4(c) we show cuts through the three-dimensional

electron density in x direction for different z positions. As expected, in or close by the

superlattice, the electron density is enhanced in the well region. Even at z = 350 nm, far

within the superlattice, a significant electron density is observed. More counterintuitive,

within the (110) GaAs region between z = 315 nm and z = 305 nm, the electron density is

enhanced in the barrier region at x = 0;100;200 nm.

5.2.2 Potential modulation

In accord with the three-dimensional electron density the potential distribution in Fig-

ure 5.5(a) is found. The overall potential drops towards the gate due to the applied gate

voltage, resulting in the two-dimensional electron gas at the gate barrier. In Figure 5.5(b) we

show cuts of the potential distribution in x direction for different z positions. In the superlat-

tice well region the potential is enhanced, and the potential equals the Fermi energy Φ = 0 V

at about z = 400 nm.
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Figure 5.4: (a) Self-consistently calculated three-dimensional electron density distribution

for a (110) GaAs layer of thickness q=30 nm (gray scale coded). (b) Electron density

integrated over the z direction to obtain the sheet electron density ns(x). The mean two-

dimensional electron density is ns = 2:1� 1011 cm�2. (c) Cuts of the calculated three-

dimensional electron distribution in x direction for different z positions.

5.2.3 Potential modulation amplitude

In the literature on surface lateral superlattices, it is customary to consider the electron den-

sity variation ∆ns in superlattice direction, and the potential modulation amplitude V0 as

proportional values,

∆ns = D0V0; (5.1)

where D0 = m�=πh̄2 is the constant density of states for a two-dimensional electron system

in GaAs. V0 can then be used as input parameter for a band structure calculation. For the

SLFET, the situation is more complicated, because of the variation of the electron density and

the potential in z direction, as discussed in the previous two sections. We derive a potential

modulation amplitude V0 for the SLFET by weighting the potential modulation amplitude

evaluated at a fixed z position with the electron density at that z position. By way of this
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Figure 5.5: (a) Self-consistently calculated potential distribution, corresponding to the elec-

tron density distribution shown of Figure 5.4 with mean two-dimensional electron density of

ns = 2:1� 1011 cm�2. The potential is plotted gray scale coded, and the contour lines are

displayed in black an white for better visibility. The Fermi line at around z = 400 nm is plot-

ted thicker. (b) Cuts through the potential distribution in x direction for different z locations.

The Fermi energy is plotted as a dashed line at Φ = 0 V.

method, we take into account that the potential modulation in superlattice direction is smaller

at z positions with high three-dimensional electron density. In Figure 5.6(a) in solid symbols

we plot V0 in dependence of the electron density, calculated for the SLFET with (110) GaAs

layer thickness of q = 30 nm. On the right axis V0 is expressed as a percentage of the Fermi

energy. The potential modulation is on the order of 1 meV, or between 5 and 10 percent of

the Fermi energy. For comparison in open symbols we also show the potential amplitude

evaluated according to relation (5.1). V0 is much larger in this case. In Figure 5.6(b) we

calculate V0 for constant electron density of ns = 2:1� 1011 cm�2 in dependence of q. The

potential modulation decreases exponentially with increasing q, and the interesting region,

investigated in this chapter, is underlaid with gray.
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Figure 5.6: Calculated potential modulation amplitude V0. (a) V0 versus electron density,

calculated for q = 30 nm. Solid symbols: weighted average, open symbols: V0 calculated

directly from the electron density variation, circles: V0 plotted on an energy axis, square:

V0 expressed as a percentage of the Fermi energy. (b) V0 for constant electron density ns =

2:1�1011 cm�2 versus (110) GaAs layer thickness q.

5.3 Magnetotransport experiments

The experiments in this chapter are performed in the measurement scheme shown in Fig-

ure 5.7. The lock-in oscillator output drives an AC current I = 10 nA (rms) through the

superlattice, one of the lower n+ GaAs contacts is grounded, and the gate voltage Ug is

applied with respect to ground. The voltage drop across the SLFET is measured with the

lock-in between the second pair of contacts to avoid contact resistances and the voltage drop

across the leads. All measurements are performed in liquid 3He at the base temperature of

T = 330 mK. The field of a superconductive 14 T magnet is oriented perpendicular to the

two-dimensional electron system in z direction, a sweep rate of 35 mT/min is used.
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Figure 5.7: Sample structure and measurement scheme.

5.3.1 Magnetoresistance traces

In Figure 5.8 we show the magnetoresistance R(B) of the q = 40 nm SLFET and the corre-

sponding q = 40 nm CEOFET reference sample, for magnetic fields between B = 0 T and

B = 0:5 T. The resistance R(B) increases quadratically, and oscillations commence at around

B = 90 mT. In Section 2.3.5 this overall behavior of the magnetoresistance is explained.

There it is found that resistance maxima occur at integer filling factors. For the present

measurement, however, the SLFET trace seems more complex than the reference sample,

oscillation amplitudes vary with magnetic field, and are generally smaller in magnitude.

In order to gain insight into the frequency spectrum of the magnetoresistance, we sub-

tract the non-oscillating background and plot the data versus inverse magnetic field. To

make visible the small amplitude oscillations at small magnetic fields, additionally we mul-

tiply the data by the inverse magnetic field. This operation only affects the amplitudes, but

leaves their frequency unchanged. In Figure 5.9 we show a resulting trace, obtained with

the q = 30 nm SLFET at a density of ns = 1:9� 1011 cm�2. Three different frequencies

can be distinguished even by eye in this presentation of the data. Quantitatively, two of the

frequencies are found by a Landau plot, where the minima are indexed. To very good approx-

imation, the minima (or maxima) lie on a straight line, and the magnetoresistance frequency
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Figure 5.8: Magnetoresistance of the q = 30 nm SLFET and CEOFET, recorded for an

electron density of ns = 3:0� 1011 cm�2 and plotted versus magnetic field. The SLFET

trace has been shifted by R = 100 Ω to make the two traces, that would otherwise overlay on

top of each other, distinguishable.

∆�1 � (1=Bi�1=Bi�1)
�1 for B> 200 mT (region A) is ∆�1 = 3:97 T, while for B< 200 mT

(region B) we find ∆�1 = 2:72 T. The third frequency component is also 1=B-periodic, and

appears in the envelope of the magnetoresistance trace for B > 140 mT. For better visibility

we have traced the envelope of this beating pattern by a dotted line. Maxima and minima

of this beating pattern appear at the same magnetic field strengths, we have marked their

position by downward pointing triangles. The corresponding frequency is smaller than both

of the other frequencies with ∆�1 = 1:44 T.

At a different electron density of ns = 3:1� 1011 cm�2, the frequency spectrum is even

more complex, as shown in Figure 5.10. Besides the frequency ∆�1 = 8:41 T for B> 167 mT

(region A), the frequency ∆�1 = 4:9 T for 167 mT> B >104 mT (region B), and the beating

pattern with ∆�1 = 1:84 T, a fourth frequency appears at very small magnetic field B <

104 mT (region C) with a frequency of ∆�1 = 3:18 T.
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Figure 5.9: Magnetoresistance R(B) of the q = 30 nm SLFET at ns = 1:9�1011 cm�2.

5.3.2 Density dependent study

We have systematically measured the magnetoresistance between B = 0 T and B = 1:4 T

for fixed electron densities between ns = 0:45�1011 cm�2 and ns = 4:6�1011 cm�2. Each

curve is then Fourier transformed with respect to the inverse magnetic field to obtain the fre-

quency components ∆�1 of the magnetoresistance oscillations. The resulting Fourier spec-

trum in shown in Figure 5.11, where we plot the data on a logarithmic color scale. A quite

complex density dependent frequency spectrum is found. The most prominent peak, labelled

by A0
F , exhibits a linear dependence on electron density. The peak labelled by A1

D shows

a very different ns-dependence. The labelling will be used in the following Sections 5.3.5

and 5.3.6, where we explain all frequencies and calculate the lines shown in black and white.

In Figure 5.12 we show the data of the SLFET with (110) GaAs layer thickness q =

40 nm, which therefore exhibits a weaker electron density modulation. The evaluation and

representation of the data is the same as for Figure 5.11. Both measurements yield the same

overall result. It appears, however, that features denominated by A2
F and A2

D do not show up

in the q = 40 nm SLFET, where feature A1
D is more strongly expressed.
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Figure 5.10: Magnetoresistance R(B) of the q = 30 nm SLFET at ns = 3:1� 1011 cm�2.

R(B) has been multiplied by 1=B2 to make visible the small amplitude oscillations at low

magnetic fields B < 100 mT.

In contrast to the SLFETs, both reference samples exhibit only the single frequency A0
F ,

as shown in Figure 5.13 for the q = 40 nm CEOFET. The plot for the q = 30 nm device

looks identical. Multiples iA0
F of the fundamental frequency are introduced by the Fourier

transformation, and do not correspond to a frequency in the resistance data.

5.3.3 Electron orbits in a multi-band structure, magnetic breakdown

We analyze the transport data semiclassically using the zero-field band structure, which is a

good approximation for the small magnetic fields in this experiment. From the self-consistent

quantum mechanical calculations, reported in Section 5.2, we have found that the modula-

tion amplitude V0 is about 1 meV, and the band structure corresponds to the free electron

dispersion, with gaps of below 0.5 meV at the Brillouin zone boundaries. In Figure 5.14(a)

we plot the band structure calculated in the Kronig-Penney model using a larger modulation

amplitude V0 = 1:6 meV in order to make visible the minigaps in the band structure. We
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Figure 5.11: Magnetoresistance Fourier spectrum for the q = 30 nm SLFET (color scale

coded). Large frequency components are shown in red, in blue areas no corresponding fre-

quency is found in the data. The dashed lines are calculated in Sections 5.3.5 and 5.3.6, the

indicated labels will be defined there as well.

plot the contours of constant energy EF of the modulated 2DES using this band structure and

the free electron dispersion along the y-direction in Figure 5.14(b). Minibands are assigned

an index n that runs from 0 for the energetically lowest lying miniband to N for the last,

partially filled miniband. The minibands with index n and n+1 are separated by the minigap

denoted as En at kx =�π=d or kx = 0. For the density range covered in this experiment three
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Figure 5.12: Magnetoresistance Fourier spectrum for the q = 40 nm SLFET. The same color

scale as in Figure 5.11 is used. The dashed lines are calculated in Sections 5.3.5 and 5.3.6.

to six minibands are occupied, and the case of four minibands (n = 0; : : : ;3;N = 3) is shown

in Figure 5.14. The Fermi contours are drawn in black lines and indexed according to the

miniband they are associated with. In general, Fermi contour N is closed, whereas all other

contours (0; : : : ;N�1) describe open electron trajectories. The electrons trace these contours

in a direction fixed by the sign of the magnetic field.

A transition from contour n to its neighbor n+ 1 entails quantum mechanical tunneling
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Figure 5.13: Magnetoresistance Fourier spectrum for the q = 40 nm reference CEOFET

(gray scale coded).

across the gap of size En, a process referred to as magnetic breakdown [Coh61] [Blo62].

We have described this mechanism in Section 2.2.8, where we have also used it to remedy

the lack of quantum mechanics in the semiclassical description of electron motion, which

would entirely be confined to the zero-field Fermi contours. The tunneling probability pn(B)

depends on the Fermi energy EF, the minigap En, and the magnetic field B. It vanishes at

B = 0 and increases exponentially with B [Sta67]

pn(B) = exp(�Bn=B); (5.2)

where Bn is the critical magnetic field (see Equation (2.28))

h̄ωcEF = E2
n ) Bn =

E2
n

EF

m�

h̄e
(5.3)
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Figure 5.14: Band structure and Fermi contours.

At the lowest B-values, all tunneling probabilities pn are close to zero, and the only pos-

sible closed electron orbit is along contour N. As B is raised though, tunneling probabilities

pn increase, and other closed orbits, composed of segments of contour N as well as segments

of open contours with lower index, become possible by virtue of magnetic breakdown. In

particular the orbit (hereafter classified according to the lowest contour index n involved),

that descends from the closed Fermi contour associated with miniband n before the Fermi

energy was raised from miniband n into miniband N, is reactivated. This closed electron

path n shares segments of contours n to N and requires a total of 4�(N�n) tunneling events

across gaps of size En to EN�1. The product of the corresponding pn(B) factors determines

its probability [Pip62]. This orbit encloses an area An
F that can be calculated to a very good

approximation in the limit V0 ! 0:

An
F = 2k2

F

 
arccosn

k0

kF
�n

k0

kF

r
1� (n

k0

kF
)2

!
; (5.4)

where kF is the Fermi wave number and k0 = π=d. In Figure 5.14(b), the closed orbit n =

1 contains sections of contours n = 1;2 and 3, involves tunneling across E1 and E2 and

encircles the light gray area A1
F. Orbits n = 2 n = 3, with corresponding A2

F and A3
F, drawn in

dark gray, cover part of this area.
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5.3.4 Probability of electron orbits

The probability p of an electron orbit, that encounters a series of tunneling gaps, is deter-

mined by the product of the probability pi for tunneling across gaps Ei, and the probability

1� p j for remaining on the the same contour at the junction of gaps E j [Pip62]

p = ∏
i2tunnel

pi ∏
j2:tunnel

(1� p j): (5.5)

We find for the contours around areas A0
F, A1

F, A2
F and some more complex contours

p(A0
F) = p4

1p4
2 p4

3

p(A1
F) = (1� p1)

2p4
2 p4

3

p(A2
F) = (1� p2)

2p4
3 (5.6)

p(A0
F�A1

F) = (1� p1)
2p4

1 p4
2 p4

3

p(2A0
F�A1

F) = (1� p1)
2p4

1 p4
2 p4

3

p(A0
F +A1

F) = (1� p1)
2p4

1 p8
2 p8

3

In Figure 5.15 we have calculated these probabilities in dependence of the magnetic field,

using the gap energies E1 = 1:3 meV, E2 = 0:8 meV and E3 = 0:4 meV, and electron densi-

ties ns = 1:9� 1011 cm�2 in (a) and ns = 3:1� 1011 cm�2 in (b). At the smallest magnetic

fields, the orbit around A2
F has the largest probability, followed by the orbit around A1

F for

intermediate fields, and the orbit around A0
F for large fields. The respective magnetic field

ranges are shaded in different gray values. Figure 5.15(b) compares to the magnetoresistance

trace presented in Figure 5.10. There we have found a switching between different magne-

toresistance frequencies at magnetic fields of B = 104 mT and B= 167 mT. This switching is

reproduced in the probability calculation as a shift of the maximum probability for electrons

orbiting around A2
F, A1

F and A0
F. The dependence of the critical magnetic field on the Fermi

energy, or, similarly, on the electron density, is manifested in a shift of the probability max-

ima to smaller magnetic fields when increasing the electron density, cf. Figures 5.15(a) and

(b). This is also consistent with the experimental observation in Figures 5.9 and 5.10, where

for the smaller electron density ns = 1:9�1011 cm�2 the transition between orbits around A1
F

and A0
F occurs at a smaller magnetic field. The dependence of the switching magnetic field

on the electron density is summarized in Figure 5.15(c). The different gray shaded regions

indicate the dominance of the different orbits in the (B;ns) parameter space. The higher
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Figure 5.15: Calculated probabilities for closed orbits in a multi-band structure. (a) ns =

1:9�1011 cm�2. (b) ns = 3:1�1011 cm�2. (c) Phase space diagram in the (B;ns) parameter

space, within which the different electron orbits have the largest probability of all probabili-

ties (for A0
F, A1

F and A2
F), or their maximum probability (for A0

F�A1
F, 2A0

F�A1
F and A0

F +A1
F).
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the electron density is, the lower the magnetic fields are at which the switching from orbits

around smaller areas to orbits around larger areas occurs.

In this framework it also becomes clear why in the q = 40 nm SLFET, with weaker den-

sity modulation, and therefore smaller energy gaps, the orbit around A2
F cannot be measured

(see Figure 5.12). The reason is, that for smaller gaps Ei the critical magnetic field for the

orbit around A2
F shifts to a field so small that quantum oscillations are inhibited by scattering.

5.3.5 Quantum interference in closed orbits

In the last section, based on the magnetic field dependence of the tunneling probabilities,

different electron orbits were found to dominate in different magnetic field regions. These

regions correspond to the experimentally determined regions A, B, and C in Figures 5.9

and 5.10. In this section we gather further evidence for this interpretation by directly calcu-

lating the magnetoresistance frequencies associated with the different electron orbits.

According to Onsager [Ons52], electrons that orbit around an arbitrarily shaped Fermi

surface AF give rise to 1/B-periodic oscillations in the magnetoresistance with a frequency

∆�1,

∆�1 =
h̄

2πe
AF: (5.7)

In a semiclassical picture, this expression originates from the fact that a stationary state

on a closed orbit must fulfil the Bohr-Sommerfeld quantization condition. The phase of the

electron wave function ϕ is given by the integral over the canonical momentum ~p = h̄~k�e~A,

where ~A is the vector potential [Lan76]

ϕ =
1
h̄

I �
h̄~k� e~A

�
d~r+

π
2

C: (5.8)

C is a magnetic field independent constant, which in some cases is referred to as the Maslov

index, and counts the amount of turning points in a closed orbit [Bra97]. Using the equation

of motion of the electron in a magnetic field, and applying Stokes theorem to the contour

integral [Kit96], we impose the condition for a stationary state on the phase (the phase accu-

mulated around a closed orbit equals an integer multiple of 2π)

ϕ = l2
BAF +

π
2

C = 2πi; i = 1;2; � � � (5.9)

where l2
B = h̄=eB is the magnetic length. From this equation Onsager’s relation (5.7) follows

immediately. As a side product we find the constant C by comparing Equation (5.9) to the
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Figure 5.16: Possible closed electron orbits in reciprocal space. The small circles indicate the

location of the tunneling junctions, the arrows point in the direction of the electron motion.

quantum mechanical result for the position of the Landau levels

EF = h̄ωc(i�1=2); i = 1;2; � � � (5.10)

Using ns = D0EF, D0 = m�=(πh̄2) and ns = 2AF=(2π)2, we find C = 2, corresponding to the

two turning points at a ’soft’ potential wall (the two-dimensional cyclotron motion can be

reduced to the one-dimensional harmonic oscillator) [Bra97].

Our density dependent study in Figures 5.11 and 5.12 of the frequency components con-

tained in the magnetoresistance together with Equations (5.4) and (5.7) now enables us to

identify the maxima marked A0
F, A1

F and A2
F as caused by electrons performing closed or-

bits n = 0, 1 and 2. The switching from lower to higher frequency near B = 104mT and

B = 167mT in Figure 5.10 results from the transition of electrons orbiting predominantly

around the area A2
F to orbits around A1

F and A0
F, respectively. In the intermediate B-field

regime multiple closed paths may simultaneously have a significant probability. Eventually

all tunneling probabilities approach unity for sufficiently large fields and the orbit with area

A0
F, equivalent to the cyclotron orbit of the unmodulated 2DES that brings about the com-

monly known Shubnikov-de Haas oscillations, is restored and prevails. The orbits with area

An
F are the most obvious closed trajectories, however more complicated closed paths with

these simple surfaces as constituents are illustrated in Figure 5.16 and are in fact resolved in

the experimental data (for example A0
F +A1

F and 2A0
F�A1

F).
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Figure 5.17: Quantum interference between open orbits. (a) At intermediate magnetic field

strengths electrons travelling in negative kx direction can either tunnel backwards into the

opposite direction, or remain on the open orbit. This model bears some similarity to the edge

channel picture used to describe the quantum Hall effect. (b) Quantum interference between

electrons passing from P1 ! P2 either along path α or along path β, schematically drawn for

the limit V0 = 0 of vanishing energy gaps.

5.3.6 Quantum interference between open orbits

Hitherto, the discussed oscillations were a direct consequence of the constructive self-

interference of the electron wave function along closed orbits and the subsequent quan-

tization in a magnetic field. This mechanism leaves unexplained our observation of the

frequency components determined by the surfaces A1
D = A0

F�A1
F and A2

D = A0
F�A2

F in Fig-

ures 5.11 and 5.12, since an electron circling along the closed boundary of this surface would

violate the chirality imposed by the B-field along part of the perimeter. We assert that oscilla-

tions with such frequencies originate from the 1=B-periodic modulation of the backscattering

probability due to quantum-mechanical interference between two open trajectories with com-

mon start and end points, as illustrated in Figure 5.17 for surface A1
D. Electrons travelling

in negative kx direction from point P1 follow either path α or β, depending on whether they

do or do not tunnel at this starting point, and rejoin at point P2. Constructive interference

of the coherent superposition of both paths maximizes the backscattering probability and

consequently the conductivity σyy approaches a minimum. By tensor inversion this implies

a minimum in the longitudinal resistivity ρxx as well. In the case of destructive interference,

the electron will effectively proceed along the open Fermi contour and thus σyy and ρxx reach

their maximum value. This qualitatively different interference phenomenon reminds of an

Aharonov-Bohm interferometer with the important disparity that in the case at hand the area
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in real space enclosed by the interfering paths scales with B�2, since real space orbits have

the same shape apart from a π=2-rotation as their counterparts in reciprocal space but are

scaled with the square of the magnetic length, l2
B = h̄=(eB). As a result, one anticipates a

1=B-periodic rather than a B-periodic phase difference between the interfering trajectories.

Similar to the last section, we calculate the electron phase accumulated along its trajec-

tory semiclassically. Unlike before, where only closed electron orbits were to be considered,

here we need the phase ϕi of an electron travelling from point P1 to point P2 along open

orbits i = α and i = β, given by

ϕP1!P2
i =

1
h̄

Z

i

�
h̄~k� e~A

�
d~r+

π
2

Ci: (5.11)

The Ci are magnetic field independent constants, which depend on the particular path of

integration. The phase difference

∆ϕP1!P2 = ϕP1!P2
α �ϕP1!P2

β = ϕP1!P2
α +ϕP2!P1

β (5.12)

between the two paths is obtained by simultaneously reversing the sign and the direction of

integration of one of the contour integrals. By this mathematical trick the two formerly open

orbits have been joined to one ’virtual’ closed orbit. The phase difference evaluates to

∆ϕP1!P2 =
1
h̄

I

α�β

�
h̄~k� e~A

�
d~r+

π
2

∆C = l2
BAα�β

D +
π
2

∆C; (5.13)

where ∆C =Cα�Cβ. The relevant reciprocal space area Aα�β
D is bounded by a pair of paths

α and β, and is nothing but the difference between surfaces Ai
F and A j

F, that have common

borders except for path α and β. The alternation frequency of the backscattering probability

is then obtained from the condition

∆ϕP1!P2 = l2
BAα�β

D +
π
2

∆C = 2πi; i = 1;2; � � � (5.14)

which translates to a relation similar to Onsager’s relation (5.7)

∆�1 =
h̄

2πe
Aα�β

D (5.15)

with the difference area Aα�β
D in place of the closed orbit area. The features denominated by

A1
D and A2

D in Figures 5.11 and 5.12 have been calculated according to Equation (5.15). The
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relation between Ai
D and the electron density is obtained via Equation (5.4). The correspon-

dence between our quantum interference model and the experiment is excellent.

In Section 5.3.4 we have calculated the probability of the orbit around A1
D. As can be seen

in Figure 5.15, the probability of this orbit is nowhere dominant over the closed orbits Ai
F, but

nevertheless has a finite value over a wide range of magnetic fields. This is the reason why

the corresponding magnetoresistance oscillations are visible as a beating pattern overlaid to

the oscillations due to closed orbits.

5.3.7 Commensurability oscillations

In 1989 Weiss and coworkers [Wei89] reported on the observation of a new type of magne-

toresistance oscillation periodic in 1=B in weakly 1D modulated two-dimensional electron

systems. Phenomenologically they were attributed to Shubnikov-de Haas oscillations where

only the electrons within the first Brillouin zone contribute. The position of the magnetore-

sistance minima is given by the condition

2rc = d(i�1=4); i = 1;2; � � � ; (5.16)

indicating a commensurability effect between the electron cyclotron radius rc = h̄kF=(eB)

and the superlattice period d. The resulting frequency of the commensurability (Weiss) os-

cillations is

∆�1
CO =

2h̄
p

2πns

ed
(5.17)

with the characteristic square root dependence on the electron density. Soon after, these

Weiss oscillations were attributed in a quantum mechanical picture to an oscillating band

width of modulation broadened Landau bands [Ger89] [Win89] [Zha90]. These calculations

use Landau states, and consider the modulation potential as a weak perturbation under the

conditions V0 � EF and V0 � h̄ωc. We remark that in Section 2.4 of this work we calculate

quantum mechanically the Landau band spectrum in a tight-binding model, where we do not

need to impose these weak perturbation conditions. Beenakker showed that the conductivity

related to the Landau band dispersion can also be explained in a classical picture as a guiding

center drift resonance [Bee89]. Weiss oscillations have also been explained in the high-field

magnetic breakdown regime [Str90]. Even though quite some theoretical and experimental

work has been done since, a direct theoretical relationship between the Weiss oscillations

and the band structure had been elusive to this date.
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Figure 5.18: Temperature dependence of quantum interference oscillations. (a) Quantum

interference in closed orbits. (b) Quantum interference between open orbits.

We show that the Weiss oscillations can be explained as special case within our semi-

classical model of quantum interference between open orbits, directly related to the artificial

band structure. Expanding Equation (5.4) for large Fermi wave numbers kF � k0, the dif-

ference area is given by A1
D = 4kFπ=d. This is a very good approximation for the electron

density range of the present experiments, and exact in the high density limit. Inserting this

difference area into our semiclassically derived Onsager type relation (5.15), quite surpris-

ingly the magnetoresistance frequency (5.17) of the Weiss oscillations is found.

Under the assumption, that the orbit A1
D gives rise to the Weiss oscillations, we are able

to derive the value for the difference of the Maslov indices ∆C defined in Equation (5.14) by

comparing this equation to Equation (5.16), where the factor 1=4 fixes the absolute position

of the magnetoresistance minima on the magnetic field axis. We find ∆C = 1, in contrast to

the previously derived C = 2 for the Shubnikov-de Haas oscillations. Since the topology of

the imaginary closed orbit around A1
D is different from the free cyclotron orbit around Ai

F,

the difference in their Maslov indices does not come as a surprise. It has, however, been

impossible for us to directly calculate the Maslov index ∆C for the open orbits.

5.3.8 Temperature dependence

To provide further support for the relationship between the Weiss oscillations and the special

case of quantum interference between open orbits bounding area A1
D, it is instructive to derive

the temperature scale up to which this interference phenomenon persists. To this end, the

energy variation δE at fixed B inducing a phase change of 2π is calculated,

δE =
2πeB

h̄

�
∂A
∂E

��1

= 2πh̄ωckF

�
∂A
∂kF

��1

; (5.18)
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Figure 5.19: (a) Quantum interference oscillations in the transverse magnetoresistance of a

pure magnesium crystal for B along [1010] and current along [1120]. The upper curve is

for T = 1:5 K, the lower curve for T = 4:2 K (data plot modified from [Sta74]). (b) Stark

quantum interferometer as part of the magnesium band structure (schematically drawn).

where h̄ωc is the free electron cyclotron energy and A the relevant k-space area. For the

free electron cyclotron orbit with area A0
F = πk2

F the familiar condition kB T < δE0 = h̄ωc

is retrieved from this formula. In Figure 5.18(a) we schematically show the area A0
F(E) for

energy E. For temperatures T > 0 electrons occupy also states with E + δE, and circle a

larger area A0
F(E + δE). If the phase difference between the two corresponding orbits is

larger than 2π, quantum interference effects will be washed out. In contrast, a much weaker

temperature dependence is predicted for the interfering open orbits bordering A1
D, and the

oscillations survive as long as kB T < h̄ωc kF d=2. This situation is shown in Figure 5.18(b).

As can be seen, the areal difference between energy E and E + δE is much weaker, as part

of the higher energy orbit is contracting. This weak temperature dependence is in fact also

found in the conventional commensurability oscillation picture [Bet90].
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5.3.9 Quantum interference in metal physics

In 1930 Landau [Lan30] predicted that the magnetization of metallic free electrons at low

temperatures should oscillate as the magnetic field varies. Incidentally, within only months,

the oscillatory magnetic behavior was experimentally discovered in single crystal bismuth

by de Haas and van Alphen [dH30], and Shubnikov and de Haas [Shu30]. In the following

decades the study of the magnetization and the magnetoresistance lead to the understanding

of many metallic band structures. Especially fruitful was the classic three page paper by

Onsager [Ons52], relating the oscillation frequency to the Fermi surface in a semi-classical

treatment based on the Bohr-Sommerfeld condition to quantize the electron motion. This

physics can be compared to the cyclotron orbit of unmodulated two-dimensional electrons

in a semiconductor. In our work this corresponds to the limit V0 ! 0 with the area A0
F.

In the 1960s Cohen, Falicov [Coh61] and Blount [Blo62] introduced the notion of mag-

netic breakdown to explain Fermi surface extremal areas much larger than expected from

the zero-field band structure. This could explain Priestley’s observation of high-frequency

oscillations in magnesium. In our work, the relevant counterpart to this metallic physics are

the magnetoresistance oscillations due to orbits around areas A1
F and A2

F. As we have shown,

these orbits become possible by electron tunneling in reciprocal space across energy gaps

of the artificial band structure. The excellent agreement of the concepts previously devel-

oped for metals with the experimental data on our superlattices shows, that they really can

be considered as artificial crystals.

A decade later, Stark and Friedberg [Sta71] [Sta74] reported on the observation of a mag-

netoresistance frequency smaller than the frequency expected from zero-field orbits. Within

the known band structure of magnesium, they explained these oscillations as resulting from

a quantum interference effect between electrons travelling on two different paths. We re-

produce their experimental data, and the so-called Stark interferometer, in Figure 5.19. At a

temperature of T = 1:4 K they observe two frequencies, the larger one of both is quenched at

a temperature of T = 4:2 K. The high frequency oscillation is attributed to a closed electron

orbit around area B, and the low frequency component corresponds to an area A. This area,

however, is not traced by the electron in a closed orbit, but rather passed by two open orbits

in the same direction. The temperature dependence of the latter oscillations is much weaker.

Within our work, we claim that the physics of this Stark quantum interferometer corresponds

to the quantum interference between open orbits as described in Section 5.3.6 for areas Ai
D.

The Weiss oscillations as a special case of this quantum interference phenomenon with area
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Figure 5.20: Magnetic breakdown in the organic superconductor κ-(BEDT-TTF)2Cu(NCS)2

(data plot modified from [Sas90]).

A1
D have therefore been observed in metals at a time when the semiconductor superlattice

was just about to be born.

5.3.10 Quantum interference in organic superconductors

Recently, an increasing interest has been paid to magnetic oscillations in two-dimensional

organic materials. Especially the band structure of the superconductor κ-(BEDT-

TTF)2Cu(NCS)2 bears great similarity to the band structure of the SLFET in our work. As

shown in Figure 5.20(b), the Fermi contour consists of a closed orbit circling area α, and

an open orbit. In the experiment [Sas90], a switching from a low frequency oscillation Fα

to a high frequency oscillation Fβ is observed. The reason is magnetic breakdown across

the gap, making the large area β dominant for electron orbits. In our work, we have ob-

served this switching behavior at much lower fields in Section 5.3, when electrons orbiting

predominantly around area Ai
D switched to a larger orbit around area Ai�1

D .

In addition to this well understood switching behavior in the superconductor, some

groups have observed also sum and difference frequencies Fβ�Fα [Har96] [Mey95]. This
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observation is currently subject of theoretical discussions [For98b] [For98a]. These frequen-

cies may be understood in the framework of quantum interference between open orbits, as

described in Section 5.3.6.

In summary we think that our work bridges the gap between quantum interference phe-

nomena observed in semiconductor superlattices, in metals, and in organic superconductors.

These systems have in common a band structure with narrow gaps, allowing for different

electron trajectories at finite magnetic field. The large body of theoretical work developed

for semiconductor superlattices may favorably be applied also to the latter two systems. In

particular at high magnetic fields even in these systems the lattice potential may be regarded

as a perturbation to the free electron gas in magnetic field.

5.4 Commensurability effects in focused laser beam dif-

fused structures

In parallel to the cleaved-edge overgrowth technique we have developed a different method

to fabricate density-modulated two-dimensional electron systems. We demonstrate for the

first time lateral surface doped superlattices (LSDSLs), which we obtain by local and shal-

low compensation doping the silicon donor layer of an GaAs/AlxGa1�xAs heterostructure.

The versatility of this method is demonstrated by three different examples of commensura-

bility effects in two-dimensional electron systems. First in weak one-dimensional LSDSLs

the known Weiss oscillations [Wei89] [Ger89] [Win89] at low magnetic fields are recov-

ered, a fact which provides evidence of the high homogeneity of the laser doped lines. At

increased compensation doping concentrations in two-dimensional LSDSLs typical antidot

resonances [Wei91b] are found, demonstrating that high electron mobilities are preserved.

In magnetic focusing experiments elongated lines in this high compensation doping regime

are shown to be specular reflecting, which further confirms their quality.

5.4.1 Method of fabrication

Our samples were MBE grown GaAs/Al0:3Ga0:7As modulation doped heterostructures with

the 2DES 60 nm below the surface. The electron density could be varied between ns =

3:5�1011 cm�2 and ns = 6:1�1011 cm�2 by successive illumination with a red light emit-

ting diode, electron mobility at the latter density was µ = 1:6� 106 cm2/Vs. All experi-
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Figure 5.21: Top: scaled laser beam profile (dashed) and doping concentration (solid); mid-

dle: calculated electron concentration gray scale encoded (black: 3:57� 1017 cm�3, white:

0�1017 cm�3); bottom: integrated 2D charge density ns (circles) and gaussian fit (solid line).

(a) small laser power, p0 = 8�1010 cm�2; (b) large laser power, p0 = 1:2�1012 cm�2.

ments were performed at liquid helium temperatures using four point lock-in measurement

technique with a measurement current of I = 1 µA. Compensation doping was achieved by

heating the Zn:SiO2 capped sample surface with the highly focused beam of an Ar+ laser

(wavelength 458 nm, laser power 1-100 mW). A non-linear thermally activated diffusion

process results in local compensation doping of the initial n-type silicon doping layer by

p-type zinc atoms, and, most importantly, in a significant narrowing of the lateral doping

profile as compared to the initial laser spot profile [Bg97]. Calculated diffusion depths of the

zinc atoms are between a few nm and 20 nm, depending on the used laser power [Bau94].

It is therefore expected that ionized impurity scattering is hardly increased after laser pat-

terning. This method was developed by Baumgartner et al. [Bg97], who have previously

fabricated in-plane-gated devices such as quantum-point contacts, single-electron transistors

and Aharonov-Bohm rings [Bau97] [Bau98].

5.4.2 Self-consistent calculation

In order to determine possible period lengths and modulation amplitudes in our LSDSLs we

have performed self-consistent Poisson/Schrödinger calculations of the 2DES at the presence
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Figure 5.22: Commensurability oscillations in a one-dimensional LSDSL with period d =

300 nm at ns = 3:1� 1011 cm�2 for two different temperatures. The inset schematically

shows the measurement scheme for the longitudinal magnetoresistance. Arrows indicate the

theoretically expected location of resistance minima. Shubnikov-de Haas oscillations appear

as 1=B periodic features above B = 0:6 T.

of compensation doping in the initial n-type doping layer. At a measured laser spot full width

at half maximum (FWHM) of 315 nm the calculated resulting doping profile is gaussian

shaped with a FWHM of 105 nm [Bau94], and the maximum p-doping concentration in the

center p0 depends on the laser power. We find that for ns = 4:3� 1011 cm�2 and p0 =

8�1010 cm�2 the potential modulation is 7% of the Fermi energy with a FWHM of 112 nm,

while for p0 = 1:2� 1012 cm�2 at the same electron density the 2DES is depleted, but the

FWHM is hardly increased to 122 nm, see Figure 5.21. Depending on the laser power small

and large potential modulations can be fabricated, while the width of the electron depletion

zone remains almost constant, and much below the laser spot size. These results indicate that

LSDSL with periods even below the laser spot size should be achievable.
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5.4.3 One-dimensional surface lateral superlattice

In a first set of experiments we have successfully fabricated LSDSLs with one-dimensional

modulation and periods between d = 500 nm and d = 200 nm by laser writing an array of

10 µm long lines across a small Hall bar. The same laser power as used for the calculation

shown in Figure 5.21(a) was chosen. Measurement results of a sample with d = 300 nm are

shown in Figure 5.22 for two different temperatures T = 4:2 K and T = 1:5 K. At magnetic

fields below B = 1 T Weiss oscillations with their typical weak temperature dependence are

clearly resolved as 1=B periodic oscillations in the longitudinal magnetoresistance. We have

discussed Weiss oscillations in Section 5.3.7. Given the period and electron density, which

we determine from the high field Shubnikov-de Haas oscillations, the expected positions Bi

of the resistance minima i = 1;2; � � � (see Equation (5.16))

Bi =
2h̄
p

2πns

ed(i�1=4)
; (5.19)

marked by arrows in Figure 5.22, coincide well with the experimental data. Potential mod-

ulation amplitudes evaluated both using the semiclassical model [Bee89] and the magnetic

breakdown picture [Bet91] mutually agree well with a magnitude of 7% of the Fermi energy.

5.4.4 Two-dimensional antidot superlattice

In a second set of experiments two-dimensional LSDSLs were fabricated by laser writing a

10 µm � 10 µm square array of dots in a small hall bar at a laser power corresponding to

Figure 5.21(b). Clear resistance maxima are found at magnetic field strengths corresponding

to electron cyclotron orbits around one and four antidots with d = 500 nm as indicated by ar-

rows in Figure 5.23, in agreement with a simple electron pinball model [Wei91b]. The small

dips α and β in the Shubnikov-de Haas maxima at smaller filling factors were reproducible

in different cool-downs and different samples. Their position forbids the trivial explanation

by spin splitting, for example the dip denoted by β lies between filling factors three and four.

5.4.5 Magnetic focussing structure

In addition to the first set of experiments, where the presence of Weiss oscillations indicated

highly homogenous laser written lines in the weak potential modulation regime, a third set of

experiments was set up to determine the quality of laser written lines in the strong potential

modulation regime. For that reason we have performed magnetic focusing experiments in
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Figure 5.23: Commensurability oscillations in rectangular two-dimensional LSDSL at ns =

3:9�1011 cm�2. Resistance resonances originate from electron localization around one and

four antidots, as indicated by the arrows and shown schematically in the inset. Features

marked by α and β cannot easily be explained by semiclassical orbits.

a 10 µm � 10 µm square of electrically isolating laser written lines with small openings

at the corners, as shown in Figure 5.24. Clear magnetoresistance oscillations periodic in

magnetic field B are caused by electrons that are specularly reflected at the boundary up

to 5 times [vH89]. We have experimentally confirmed the expected length dependence of

the resonances in a structure with side wall length of 5 µm, where resonances appeared at

double the magnetic field strengths. The result of this experiment further demonstrates the

smoothness of the laser generated potential modulation.

5.4.6 Summary

In summary we have fabricated lateral surface doped superlattices by selectively p-type dop-

ing an initially n-type GaAs/Al0:3Ga0:7As heterostructure with down to sub-laser wavelength

periods. Lateral regularity and homogeneity of the laser written structures were confirmed

by magnetotransport measurements on one-dimensional and two-dimensional LSDSLs. In
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Figure 5.24: Magnetic focussing resistance oscillations (left axis), the resistance minima

lie on a straight line (right axis). The inset shows the focussing structure and the measure-

ment geometry. Observed resistance oscillations demonstrate the commensurability between

the electron cyclotron radius and the 10 µm sidewall where the electron bounces an integer

number of times a, as schematically shown in the inset for a = 0 and a = 1.

the former case Weiss oscillations were observed, whereas in the latter case typical antidot

resonances appeared. The high quality of the laser written lines was further demonstrated by

magnetic focusing experiments, showing specular reflection of electrons of up to 5 times. In

contrast to other conventional patterning methods with our method of compensation doping

almost arbitrary lateral potential landscapes may be fabricated. This is simply achieved by

adjusting the laser power during the patterning process. LSDSLs with complex unit cells

not only in lateral shape but also in electron density should be feasible. We have demon-

strated two particular examples of weak and strong modulation strengths. With our method

little or no crystal damage occurs during patterning, and mechanical strain, which often in-

terferes with the electrostatic modulation using other methods, is avoided. Our LSDSLs may

additionally be gated for further flexibility.
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5.5 Conclusion

In this chapter we have demonstrated the rich physics arising out of the combination of an

artificial band structure and quantum interference effects. We distinguish two physically

different interference effects. First, quantum interference of electrons travelling on closed

orbits, and second quantum interference between two open electron orbits.

In the simplest case, quantum interference in an unmodulated two-dimensional electron

system results in magnetoresistance oscillations due to electrons orbiting on cyclotron orbits.

When a perturbing periodic potential is added, as in the SLFET, the zero-field band structure

falls apart in a series of open Fermi contours, and one closed orbit enclosing a much smaller

reciprocal space area. At the smallest magnetic fields, this orbit produces magnetoresistance

oscillations with small frequency. As the magnetic field is raised, however, the process of

magnetic breakdown couples previously unconnected trajectories, and closed orbits around

larger reciprocal space areas become dominant. In the experiment, higher magnetoresistance

frequencies are then observed. As the breakdown probability approaches unity for large

fields, the cyclotron orbit encountered in the unperturbed electron system is reinstalled.

In addition to these closed orbit phenomena, at intermediate magnetic fields, where the

breakdown probability is about 50 %, we have discovered a process in reciprocal space rem-

iniscent to the Aharonov-Bohm effect in real space. Forward moving electrons can reverse

direction by taking two different paths, and the resulting backscattering probability is modu-

lated by the magnetic flux threading the enclosed area. We have discovered that the resulting

magnetoresistance frequency for the lowest order of such processes is identical to the well

known Weiss oscillations. This sheds new light on their understanding, and in particular

established for the first time a direct relation between their magnetoresistance frequency and

the band structure. We think that quantum interference phenomena observed in metallic

systems, and in organic superconductors, may be treated on a similar footing as the com-

mensurability effects investigated in superlattices.
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Chapter 6

Phase Transition at Fractional Filling

Ultra-clean two-dimensional electron systems in a strong perpendicular

magnetic field condense by virtue of the Coulomb interaction at particular ra-

tional values of the filling factor into incompressible fractional quantum Hall

states. In GaAs-based systems, the Zeeman splitting is so small, that at low elec-

tron densities it becomes comparable to the Coulomb energy, and spin is turned

into an important extra dynamical internal degree of freedom. Spin reversal then

occurs at little or no energetic cost.

Owing to the unparalleled combination of high electron mobility and elec-

tron density tunability in the SLFET, we are able to investigate the rich phase

transition physics resulting from competing ground states with different spin

orientations. This phase transition is accompanied by hysteresis, ascribed to

2D-Ising ferromagnetism with easy axis anisotropy, by a temperature activated

amplitude, and by a peculiar non-monotonic temporal behavior, reminiscent of

the Barkhausen effect. Furthermore, resistively detected nuclear magnetic res-

onance suggests an intricate domain morphology and dynamics, that partly in-

volves the nuclear spin system of the host semiconductor. Even though our

experiment and theory quite generally apply to two-dimensional systems, the

superlattice in the SLFET seems to offer periodic pinning centers for the spin

domains, thus intensifying hysteretic effects.
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6.1 Review

For a two-dimensional electron system of density ns in a perpendicular magnetic field B, the

Landau level filling is given by ν = nsh=(eB). Unlike the integer quantum Hall effect, which

occurs at integer filling factors, under favorable conditions the two-dimensional system con-

denses into a new many-body ground state at fractional filling factors, characterized, as in

the integer case, by a quantized Hall and vanishing longitudinal conductance. Some good

reviews on the quantum Hall effects include [Pra87], [Cha95] and [Sar96]. At very strong

fields, all electron spins are aligned and the spin degree of freedom is effectively frozen out,

since the Coulomb interaction scales with
p

B, whereas the Zeeman splitting rises linearly.

However, in GaAs-based two-dimensional electron systems the Zeeman splitting is so small,

that by lowering ns the fractional quantum Hall regime can be shifted to fields, where spin is

turned into an important extra dynamical internal degree of freedom [Hal83] [Xie89] [TC90].

Spin reversal then occurs at little or no energetic cost and rich phase transition physics en-

sues, since multiple fractional quantum Hall ground states that differ mainly in their spin

configuration compete. Signatures for phase transitions at ν = 2=3 and ν = 2=5 between

distinct spin-unpolarized and fully spin-polarized FQHE states that occupy the same fill-

ing factor were uncovered in transport experiments [Eis90] [Eng92] [Kan97] [Kro99]. A

recent photoluminescence study even gained direct access to the degree of spin polariza-

tion [Kuk99].

In the integer quantum Hall regime, the correlation between two macroscopically degen-

erate Landau levels, that are brought energetically close to alignment, can result in a transi-

tion of the electronic system to ordered many-particle ground states similar to those of fa-

miliar low dimensional ferromagnets [Jun98] [Pia99] [Mac99]. To benefit from this analogy,

the Landau level degree of freedom is assigned a pseudospin and the problem is analyzed

in terms of the anisotropy energy for a particular pseudospin orientation. The competition

between exchange and Coulomb interaction energies controls the most favorable orientation.

In cases where electrostatic energy contributions are negligible, exchange energy costs dic-

tate that the pseudospin either points up or downwards characteristic of a ferromagnet with

easy axis anisotropy [Jun98]. Integer quantum Hall states at even integer filling near the

coincidence of two spin-resolved Landau levels with different index and opposite spin con-

stitute examples. In the fractional quantum Hall regime, a rigorous physical description of

ferromagnetism has not been put forward. Because the ground state spin transition physics

at filling factors ν = 2=3 and ν = 2=5 can be rephrased in the composite fermion [Sar96]
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language as occurring at even composite fermion filling factor νCF = 2 from the coincidence

of the spin-down state of the lowest composite fermion Landau level with the spin-up state of

the second Landau level, it is natural to pursue whether these phase transitions too fall within

the realm of ferromagnetism. In such ferromagnets disorder should introduce a random com-

ponent into the effective field strength that aligns the pseudospin [Jun98]. Moreover, it may

pin and nucleate domains of opposite pseudospin orientation. Large energy barriers between

adjacent domains then are bound to promote hysteresis in physical properties. From its ob-

servation Ising ferromagnetism has been inferred [Pia99] [Cho98]. The domain morphology,

dynamics and microscopic mechanisms for transport through such a ferromagnet have not

been addressed to date.

In this chapter, we exploit high electron mobility and density tunability of the SLFET

to investigate the ground state spin transition near ν = 2=3 in dependence of electron den-

sity ns, magnetic field strength and sweep direction, temperature T , modulation strength,

and radio frequency irradiation. We find that the spin transition following the line ν = 2=3

occurs at different values of the carrier density depending on whether ns is gradually low-

ered or raised, as one would anticipate for a ferromagnet with easy axis anisotropy broken

up in domains. To improve our comprehension of the physical mechanisms responsible for

hysteresis, the time behavior of the resistance is examined. It exhibits sudden jumps akin

to the Barkhausen effect in the magnetization of conventional ferromagnets [Ber98], where

it is ultimately assigned to the energy landscape in which the system evolves with a huge

number of local minima and saddle points that reflect the unavoidable presence of structural

disorder in a macroscopic magnetic system. On longer time scales, the resistance reveals that

equilibrium is progressively approached in a logarithmic fashion, typical for systems char-

acterized by a wide distribution of energy barriers or time constants [Ber98]. Finally, the

response to radio frequency irradiation in the resistance is investigated. Its correlation with

the sign and size of the hysteresis supports the assertion that the nuclear spin system affects

transport through this peculiar ferromagnet. All these observations are intimately connected

with domain morphology.

The work reported here is the result of a collaboration with J. Smet of the K. v. Klitzing

group, Max-Planck-Institut für Festkörperforschung, Stuttgart. All T = 50 mK measure-

ments were performed in their dilution refrigerator, and J. Smet contributed the major part

of the understanding of our results. Two of the SLFETs described in Chapter 3 are used in

this study. Both have a superlattice period of d = 15 nm, a channel length of L = 3 µm, but

differ in the modulation strength. As calculated in Section 3.2, the SLFET with (110) GaAs
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layer thickness q=10 nm exhibits a significant periodic electron density modulation, while

the q = 20 nm SLFET much rather resembles a free two-dimensional electron system with

only very weak modulation. Most of the results presented in this chapter have previously

been published in [Sme01].

6.2 Overview

In Figure 6.1 we present an overview of the magnetoresistance, obtained with the q = 20 nm

SLFET at a temperature of T = 330 mK. This measurement was obtained by sweeping the

electron density for fixed magnetic field. In the color coded plot the measured magnetore-

sistance was processed to make visible the maxima (red) and the minima (blue). As we have

discussed in Section 2.3.5, for the given short and wide sample geometry, resistance maxima

are observed at integer (fractional) filling factors. We concentrate on the density and mag-

netic field range for filling factors smaller than ν = 2. As can be seen, a variety of fractional

filling factors are observed even at remarkably small electron densities. We point out that it

is generally difficult to measure the fractional quantum Hall effect in the low density regime

ns < 1� 1011 cm�2, first because reduced screening of ionized impurities is detrimental to

high electron mobilities, and second because ohmic contacts to a low density system are dif-

ficult to fabricate. In the SLFET, ionized impurity scattering is to a large extent reduced as no

modulation doping is employed, and because of the special contacting scheme via n+ GaAs

layers, even very low electron density systems are reliably contacted. Yet the observation of

the fractional quantum Hall effect in the SLFET is somewhat surprising because of the close

proximity of the metallic gate electrode to the two-dimensional electron system, as a result

of which long range correlations required for the fractional quantum Hall states should be

screened out. The bottom trace in Figure 6.1 is obtained for B = 14 T and serves as example

for an unprocessed measurement. To our knowledge fractional quantum Hall traces of simi-

lar quality on (110) GaAs have not been published to date, and even in our molecular beam

epitaxy machine we have not been able to grow similar quality material on bulk (110) GaAs

wafers.

In Figure 6.2 we compare the magnetoresistance of the q = 10 nm SLFET and the corre-

sponding reference CEOFET, obtained for a fixed electron density of ns = 1:6� 1011 cm�2

at T = 330 mK. As can be seen, even in the significantly modulated electron system of the

q = 10 nm SLFET the fractional quantum Hall state is developed, most clearly seen for the

ν = 2=3 state. The reference CEOFET, in contrast, exhibits a quite low electron mobility,
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Figure 6.1: Fractional quantum Hall effect in the q = 20 nm SLFET.
R. A. Deutschmann Two dimensional electron systems in atomically precise periodic potentials (2001)
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Figure 6.2: Magnetoresistance of the q = 10 nm SLFET (black line) and CEOFET (gray

line).

manifested in an almost complete loss of the ν = 2=3 state, and an onset of magnetoresis-

tance oscillations at a large magnetic field. The reason for this discrepancy is unclear to

date. Possibly the (110) growth kinetics on a cleaved GaAs/AlGaAs superlattice substrate is

favorable to the growth on homogenous GaAs.

A significant feature is observed in the SLFET at the ν= 2=3 filling factor. The resistance

exhibits a strong dependence on the magnetic field sweep direction. During the upward

sweep, the resistance peak is almost quenched, and rejoins the trace obtained during the

downward sweep beyond the ν = 2=3 filling factor. Only during the downward sweep this

fractional state seems fully developed. This hysteretic behavior is the main focus of this

chapter.

A low-temperature measurement (T = 50 mK) of the q = 20 nm SLFET in the vicinity

of half-filling is shown in Figure 6.3. The ν = 2=3, ν = 3=5, ν = 2=5 and ν = 1=3 states are

fully developed, and fractions up to ν = 5=9 and ν = 4=9 are resolved. This is to demonstrate

the high quality of this SLFET. In the inset we show the resistance for a smaller electron

density of ns = 0:94�1011 cm�2, measured around the ν= 2=3 state magnetic fields between

B = 5 T and B = 7 T. The trace has been shifted vertically for clarity. At this density a
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Figure 6.3: Magnetoresistance of the q = 20 nm SLFET.

pronounced hysteresis between upward and downward sweep is observed. In Section 6.4 the

dependence of this hysteresis on the electron density is studied in detail. It is interesting to

note that at a temperature of T = 330 mK, the same sample did not exhibit any hysteresis. In

the next section we therefore look at the temperature dependence of this hysteresis.

6.3 Temperature dependence

We investigate the temperature dependence of the ν = 2=3 resistance maximum of the

q = 10 nm SLFET between T = 350 mK and T = 700 mK. As can be seen in Figure 6.4(b),

the resistance maximum at down sweep orderly quenches with increasing temperature. The

maximum at up sweep, however, first increases and shifts on the magnetic field axis, and

then decreases, see Figure 6.4(a). In Figure 6.4(c) the drop of the resistance down sweep

maximum is found to be linear. Strikingly, the amplitude of the hysteresis, defined as the

difference between the up sweep and the down sweep resistance maxima, exhibits an expo-
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Figure 6.4: Temperature dependence of the ν = 2=3 hysteresis in the q = 10 nm SLFET.
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nential drop, see Figure 6.4(d). This type of quenching of the hysteresis indicates that the

underlying physics is characterized by an activation process. In conjunction with our obser-

vation, that no hysteresis is found in the q = 20 nm SLFET at T = 330 mK, but clearly at

T = 50 mK, we speculate that the potential modulation induced by the superlattice serves to

increase the cause for the hysteretic behavior.

6.4 Hysteresis at filling factor ν=2/3

In Figure 6.5 we present a complete scan of the hysteretic region, obtained with the q= 20 nm

SLFET at a temperature of T = 50 mK. Figure 6.5(a) displays the magnetoresistance R in

the (1=ν;ns)-plane for ν < 1 for negative sweep direction. Following the line of constant

filling ν = 2=3 as ns (or equivalently the field B) is lowered, the resistance maximum col-

lapses and subsequently reemerges at a slightly offset filling factor. This reentrant behavior

is the signature in transport for the transition between the spin-unpolarized ("#) to the spin-

polarized ("") ground states [Eis90] [Eng92] [Kan97]. Inverting the field sweep direction

for recording the resistance in the (1=ν;ns)-plane unveils hitherto undisclosed aspects of this

ν = 2=3 phase transition. When acquiring the data during upward sweeps in Figure 6.5(b),

the spin transition is postponed to higher electron densities ns (i.e. magnetic fields B) in

comparison with data collected during downward sweeps. Accordingly, the electronic spin

polarization γ along the lines of constant filling factor ν = 2=3 will exhibit hysteretic behav-

ior, as schematically shown in the inset of Figure 6.5(b). These observations are congruous

with an Ising ferromagnetic phase transition, if the unpolarized and fully polarized ground

states are mapped onto states of opposite pseudospin orientation. The drop in the resistance

in the vicinity of the phase transition may then reflect the dissipative current, that originates

from the eventual backscattering of charge-carrying quasi-particles that suffer reflections off

energy barriers separating disorder-induced domains of distinct pseudospin.

6.5 Resistance time dependence

The ferromagnetic nature of the domains is indirectly confirmed by the introduction of time

as a parameter. It allows to corroborate on the importance of domains and their bound-

aries and sheds light on their dynamics. The resistance in the hysteretic region manifests a

strong dependence on both the field sweep rate and the time following a change in an ap-
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Figure 6.5: Color map of the source-drain resistance R in units of h=e2 in the (1=ν; ns)-plane

when the field or carrier density is swept (a) downwards or (b) upwards. The inset schemati-

cally indicates the degree of electron spin polarization along the line ν= 2=3 when the carrier

density or field is increased (solid line) or lowered (dashed line) (modified from [Sme01]).

plied field. One example is depicted in Figure 6.6. In this experiment on the q = 20 nm

SLFET at T = 50 mK, the resistance was recorded while sweeping from ν = 2=3 down-

ward to ν = 1, and upward back to ν = 2=3, see Figure 6.6(a). While the magnetic field

was held constant, the resistance was then recorded over time, see Figure 6.6(b). As can

be seen, R decreases over time, and exhibits sudden drops. After almost one hour the resis-

tance has drastically dropped by ∆R = 10 kΩ, or 40% of h=e2. When the magnetic field is

then increased, the resistance entirely recovers, see Figure 6.6(c). Phenomenologically, this

time dependent behavior invariably reminds of the Barkhausen- and magnetic after-effects in
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Figure 6.6: Time evolution of the ν = 2=3 resistance (modified from [Sme01]), and one

snapshot of a domain wall motion event (schematically drawn).

familiar ferromagnetic materials [Ber98] [Pro99]. Their hallmarks are abrupt, mostly non-

reproducible jumps in the magnetization and a time lag on the scale of minutes, hours or even

days between the sudden change in applied field and the equilibrium of the magnetization in

a specimen. Here, in an analogous fashion, impediments to free domain wall motion, caused

by any imperfections or irregularities that render the wall energy position-dependent, may

make wall motion in our system proceed by a series of Barkhausen jumps between energy
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minima. These jumps may be due to thermal agitation or external field driven. Surges in R

proclaim these prompt rearrangements of domains, that reshape the potential landscape for

backscattering of the mobile charge-carrying quasi-particles near domain walls held respon-

sible for the dissipative current. One particular example of a domain wall motion incident

is schematically shown in Figure 6.6(d). Here the spin-polarized ground state domain grows

on the cost of the neighboring domains being in the spin-unpolarized ground state.

Using the same experimental procedure that led to Figure 6.6(b), we have monitored R

over long time frames (> 10 hours). We find that the resistance R does not settle and its

overall trend follows a time-logarithmic function, as shown in the insert to Figure 6.6. In

common ferromagnetic materials, described by a wide spread of time constants because of

the heterogeneous domain shapes and barriers, the thermal relaxation and magnetic viscos-

ity indeed only accomplish a logarithmic approach of the magnetization to the equilibrium

state [Ber98] [Pro99]. Keeping in mind that here a resistance is measured, the analogies

are extraordinary. Even though only one specific example is shown, the time-logarithmic

relaxation and the ”resistive Barkhausen jumps” are pervasive in the entire phase transition

region. We interpret them as additional evidence for domain morphology.

6.6 Nuclear magnetic resonance

For a system partitioned in domains, domain growth or transport across domains with differ-

ent spin configuration demands electron spin flips. Besides spin-orbit coupling and acoustic

phonon emission, the contact hyperfine interaction is a possible candidate to mediate electron

spin reversal via flip-flop scattering events, the simultaneous flip of an electron and nuclear

spin [Wal94]. As a consequence, the nuclear spin polarization of the host semiconductor is

modified. This process, referred to as dynamic nuclear spin polarization (DNP), conversely

will affect the electron transport in the following ways, if the net nuclear spin polarization is

substantial:

1. The altered number of nuclear partners with the appropriate spin modulates the flip-

flop scattering rate.

2. A net nuclear spin polarization represents an effective nuclear field to be considered

for the electronic Zeeman splitting. Depending on whether at the domain wall the

transition occurs from an unpolarized to a spin polarized domain or vice versa, the

nuclear field will either enhance or lower the Zeeman splitting as the net nuclear spin
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Figure 6.7: Resistively detected NMR for As75 at different fields (A,B,C) around filling

factor ν = 2=3 indicated on the R vs. B curves. The transitions between the nuclear energy

levels are depicted in the insert (from [Sme01]).

polarization grows and subsequently in turn suppress or promote additional spin flips.

This effective field lays out modified energy barriers between domains of opposite

electronic spin configuration.

3. Due to nuclear spin diffusion, the net nuclear spin polarization is not localized to the

domain walls and ‘cross-talk’ will further complicate the picture.

The standard approach in transport to highlight the influence of the nuclear spin system

consists of irradiating the sample with narrow-band radio frequency, while simultaneously

monitoring the resistance of the 2DES [Wal94] [Kro99]. Radio frequency in resonance with

a transition between the Zeeman split nuclear energy levels, impairs the net nuclear spin

polarization and reverses the effects of the DNP. Nuclear magnetic resonance spectra for
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As75 are plotted in Figure 6.7. The resonance lines show a three-fold splitting, ascribed

to the interaction of the quadrupole moment of these I = 3=2-nuclei with intrinsic electric

field gradients induced by stress and/or the broken cubic symmetry near the interface of

the slightly lattice-mismatched GaAs and AlAs layers in the SLFET. Two additional peaks

in between the dominant triplet, are identified as ∆m = 2-transitions triggered by the un-

intentionally generated second-harmonic of the incident radio frequency. By virtue of the

quadrupole interaction, these transitions are no longer forbidden and saturable because of

the long T1-relaxation time. Data taken at double the frequency (bottom right panel) confirm

this assertion.

These nuclear magnetic resonance results support the importance of DNP for transport

across this ferromagnetic phase, since magnitude and sign of the radio frequency response

correlate with the difference in R between up and down sweeps. Quadrupole splitting ac-

counts for the resonance substructure. It is difficult to unravel in this nuclear magnetic res-

onance set-up whether the nuclear spin polarization is the sole consequence of current flow.

However, other potential sources are difficult to reconcile with the large number of nuclear

spin flips required to have an observable impact in comparison with the insignificant number

of electrons involved. DNP and nuclear spin diffusion will bring in a slow time dependence

and should themselves be — besides the very presence of domains due to the exchange in-

teraction and disorder — an additional source for hysteresis. Granting that current flow is

responsible for the nuclear spin polarization, this assertion is supported by systematically

lowering the excitation current over three orders of magnitude (5 nA down to 5 pA), while

keeping the sweep rate constant, and studying the hysteresis along ν = 2=3. The contribution

of DNP should dwindle. Indeed, at 5 pA dramatic hysteresis remains. It is only altered in

shape for currents above 0:5 nA and the transitions shift to different densities with increasing

excitation current.

6.7 Conclusion

Substantial evidence has been gathered for ferromagnetic ordering and domain morphol-

ogy in the fractional quantum Hall regime. Intricate, possibly unique, microscopic mech-

anisms for magnetism and transport through this peculiar ferromagnet are at work. The

time-dependent interplay of the domain structure, thermal relaxation and the role of nuclear

spins turns the microscopic description of transport through this ferromagnet in the fractional

quantum Hall regime into a tremendous challenge. In nominally isotropic two-dimensional
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electron systems, the domain formation is disorder-induced. In the SLFET, however, we

have evidence that the potential modulation plays an intensifying role to domain formation.

The study of samples with artificially created boundary between both phases of opposite

pseudospin should be promising to isolate the various mechanisms pointed out here. Using

the SLFET, further studies could be dedicated to changing the superlattice period and mod-

ulation strength. Eventually, local probes may then be put to work. Generally, the unrivalled

controllability, through patterning and gating among others, inherent to the GaAs-based two-

dimensional electron systems is then likely to render it into a profitable test vehicle for the

general study of low dimensional magnetism, macroscopic quantum tunnelling and non-

equilibrium thermodynamics.
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Chapter 7

Conclusion

In this work we have introduced a new semiconductor device, the superlattice field effect

transistor (SLFET). This device is a combination of a two-dimensional electron system and

a superlattice. We were able to explore the wide range of physics between one- and two-

dimensional electron systems because of the fact that several controllable energy scales could

be brought into the same order of magnitude. In Figure 7.1 we summarize some of the in-

terrelations between the different regimes and their dependence on the experimentally con-

trollable parameters. Two-dimensional physics was characterized by magneto-quantum os-

cillations, and miniband transport. As we have increased the Fermi energy, or, equivalently,

the electron density by means of the gate, we entered the one-dimensional world, charac-

terized in magnetotransport by open electron orbits. We were then able to travel back to

the two-dimensional world by increasing the magnetic field, thus invoking magnetic break-

down, and recovered closed electron orbits. Tweaking the coupling strength, we found that

with increasing overlap of the wave functions in adjacent quantum wires, we left the regime

of resonant tunneling, characteristic of separate quantum wires, and entered the regime of

miniband transport, characteristic of modulated two-dimensional electron systems. On yet

another axis of this parameter space, when increasing the superlattice period length at con-

stant Fermi energy, more than one miniband became occupied, and we were faced with a

multi-band structure, perfectly suited for studying quantum interference effects. At very

small magnetic fields, only the electron orbit with the smallest reciprocal space area was

dominant and observed as characteristic magnetoresistance frequency. For larger magnetic

fields, however, by virtue of magnetic breakdown, quantum interference in several different

closed orbits and between different open orbits became possible, all marking the magnetore-
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Figure 7.1: Parameter space.

sistance frequency spectrum with their own frequency. Finally, weakly modulated SLFETs

were found to be an ideal testbed for studies in the fractional quantum Hall regime.

The main technological advance of this work is the development of the superlattice field

effect transistor, which offers the unparalleled combination of flexibility in band structure

engineering, high electron mobility, and electron density tunability.

The main experimental advances of this work are

� the discovery of negative differential resistance due to Bloch localization of miniband

electrons

� the observation of the transition from closed to open electron orbits when raising the

Fermi energy from within the miniband into the minigap

� the first experimental confirmation of the magnetic breakdown formula in an artificial

band structure

� the first observation of resonant tunneling between an array of identical quantum wires
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� the direct visualization of the artificial multi-band structure of a one-dimensionally

modulated two-dimensional electron system

� the first complete mapping of the ferromagnetic phase transition in the fractional quan-

tum Hall regime

The main theoretical advances of this work are

� the numerical calculation of the SLFET band structure

� the semiclassical model for transport in weakly modulated two-dimensional electron

systems, in particular the quantum interference between open electron orbits

� the discovery that the Weiss oscillations represent a special case of this semiclassical

theory, and their explanation based on the artificial band structure

We think that our work offers the potential for a variety of future projects, of both theoret-

ical and experimental nature. Transport calculations using the Kubo formula should be able

to quantitatively explain our magnetoresistance data in Chapter 2. Spin effects are observed

in experiment, and also need to be included in the theory. Non-equilibrium transport calcu-

lations, already well established for bulk superlattices, are required for quantitative explana-

tion of the miniband transport data in Chapter 3. Of particular interest here is the question of

charge stability in the regime of negative differential velocity, qualitatively postulated in our

model. Can travelling charge waves even exist in this low-dimensional superlattice system?

Our resonant tunneling model in Chapter 4 may be quantified, and the periodic current res-

onances at high magnetic fields remained unexplained in our model. In Chapter 5 with our

semiclassical theory we were able to explain the frequency of the magnetoresistance oscilla-

tions due to quantum interference, the resistance amplitudes await a quantitative explanation.

Certainly, the ferromagnetic phase transition observed in the fractional quantum Hall regime

(see Chapter 6) is only quite phenomenologically described in our model. And in particular,

the intricate, time-dependent interplay of the disorder-induced domain structure, thermal re-

laxation, and the role of nuclear spins turns the microscopic description of transport through

this ferromagnet into a tremendous challenge.

On the experimental side, further magnetotransport studies of the type presented in Chap-

ter 2 should be dedicated to spin effects. As already mentioned in Section 2.3.8, there has

been increasing theoretical interest in the ground state of a two-dimensional electron gas in
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a short-period lateral potential in magnetic field, with the Coulomb electron-electron inter-

action included in the Hartree-Fock approximation. It is found that for a sufficiently short

period the dominant Coulomb effects are determined by the exchange interaction, and hys-

teretic behavior is predicted when the magnetic field is tilted and increased, such that the

perpendicular component is always constant [Man00]. This behavior is a result of the inter-

play of the exchange interaction with the energy dispersion and the spin splitting. Hysteresis

effects of this type should be observable in magnetotransport experiments in tilted magnetic

fields using the SLFET.

Regarding non-equilibrium transport, a definitive goal must be the fabrication of the

Bloch oscillator. Although we have not been successful to detect Bloch emission from the

SLFET, neither using a photoconductive InSb, nor a second identical SLFET, as detector,

the observation of Bloch-phonon resonances (Section 3.3.3) is a first indication that with

more sensitive detectors Bloch emission should be seen. Under irradiation with the Bloch

frequency the SLFET should exhibit a current resonance effect (inverse Bloch oscillator).

CEOFETs have been found to operate at room temperature, but the high-temperature behav-

ior of the SLFETs, and in particular the temperature dependence of the negative differential

resistance, is yet to be measured. Further studies could be dedicated to non-equilibrium

transport in crossed and parallel electric and magnetic fields. With respect to the recent

theoretical studies of coupled Luttinger liquids, equilibrium (magneto)transport experiments

may reveal interesting aspects using the weakly coupled array of quantum wires (Chapter 4).

At finite bias, voltage-controlled lasing has been proposed in a weakly coupled superlat-

tice [Kaz71]. The problem of instabilities may be solved by using coupled one-dimensional

wires as in the SLFET instead of quantum wells. Our work on weakly modulated electron

systems (Chapter 5) may be extended to even smaller period lengths, such that only two or

three minibands are occupied, in which case the quantum interference phenomena should be

most clearly seen. Some attention should also be paid to the region around half filling, as we

can expect similar quantum interference phenomena also for composite fermions. Finally,

our studies in the fractional quantum Hall regime presented in Chapter 6 represent only the

beginning of an understanding of the phenomena. A further increase of the electron mo-

bility would be desired, and the influence of the potential modulation should be clarified.

The SLFET concept may be extended by a second cleave and overgrowth to fabricate a Mott

wire, that could be tuned in and out of the Mott gap by means of the gate.
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stability of the current-voltage characteristics in doped GaAs-AlAs superlattices.

Appl. Phys. Lett. 65:1808, 1994.

[Kas97] J. Kastrup, R. Hey, K. H. Ploog, H. T. Grahn, L. L. Bonilla, M. Kindelahn,

M. Moscoso, A. Wacker, and J. Galan. Electrically tunable GHz oscillations

in doped GaAs-AlAs superlattices. Phys. Rev. B 55:2476, 1997.

[Kaz71] R. Kazarinov and R. Suris. Possibility of the amplification of electromagnetic

waves in a semiconductor with a superlattice. Sov. Phys. Semicond. 5:707, 1971.

[Kit96] C. Kittel. Introduction to Solid State Physics, chapter 9, pages 255–257. John

Wiley & Sons, Inc., seventh edition edition, 1996.

[Kro99] S. Kronüller. Eigenschaften von Grund- und Anregungszuständen im FQHE-
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durch Überwachsen von Spaltflächen. Ph.D. thesis, Walter Schottky Institut,

Technische Universität München, 2000.

[Sak76] H. Sakaki, K. Wagatsuma, J. Hamasaki, and S. Saito. Possible applications of

surface corrugated quantum thin films to negative-resistance devices. Thin Solid

Films 36:497, 1976.

[Sak99] H. Sakaki, Y. Nakamura, M. Yamauchi, T. Someya, H. Akiyama, and D. Kishi-

moto. 10 nm scale edge-and step-quantum wires and related structures: Progress

in their design, epitaxial systhesis and physics. Physica E 4:56, 1999.

[Sar96] S. D. Sarma and A. Pinczuk. Perspectives on Quantum Hall Effects. Wiley, New

York, 1996.

R. A. Deutschmann Two dimensional electron systems in atomically precise periodic potentials (2001)
Ph.D. Dissertation. Selected Topics of Semiconductor Physics and Technology, ISBN 3-932749-42-1



BIBLIOGRAPHY 203

[Sas90] T. Sasaki, H. Sato, and N. Toyota. Magnetic breakdown effect in organic super-

conductor κ-(BEDT-TTF)2Cu(NCS)2. Solid State Comm. 76:507, 1990.

[Sch98a] G. Schedelbeck. Optische Eigenschaften von Halbleiternanotrukturen hergestellt
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